Skip to main content

No project description provided

Project description

spatial_access: Compute travel times and spatial access metrics at scale

Compute travel times and spatial access measures at scale (millions of origin-destination pairs in minutes). Travel times for three modes: walking, biking, driving. Spatial access measures: provider-to-people ratio, avg. time to nearest provider, count/attribute sum of nearby providers, weighted access scores and floating catchment areas.

Latest Release latest release
Build Status travis build status
Documentation read the docs
Tested Operating Systems Ubuntu, macOS

Components of spatial_access :

spatial_access has two submodules:

  • p2p: Generate many to many matrices with travel times for sets of coordinates. Use walk ,bike or drive network types (import transit from other sources), or get the distance in meters.
  • Models: Contains a suite of models for calculating spatial accessibility to amenities.

To use this service as a ReST API, see: https://github.com/GeoDaCenter/spatial_access_api

If you are a Windows user, instructions for installing Ubuntu on a virtual machine are at the bottom of the Readme.

Installation

  1. A modern compiler like gcc or clang.

  2. Dependencies

    • MacOS:

      brew install spatialindex

    • Ubuntu:

      sudo apt-get install libspatialindex-dev

      sudo apt-get install python-tk

  3. Package

    pip3 install spatial_access

More detailed instructions for installing in 0_Reqs_Install.ipynb

Usage

See the iPython notebooks in docs/ for example usage, The first two notebooks contain installation instructions and run through a simple demo to make sure you have the setup successfully installed:

The remaining notebooks walk through how to run the travel time matrix and spatial access metrics, including main functions and parameters:

The data folder contains the input_data needed to estimate the metrics under sources (for origins) and destinations (for destinations).
In output_data, the matrices folder stores the estimated symmetric and asymmetric matrices.
The models folder contains the results of the models' analyses.
Finally, figures stores the results of maps and plots calculated during the process.

You can also download all of the notebooks in one PDF file here.

Overwriting default configuration values

p2p provides default configuration values for edge weights and node impedance (see spatial_access/configs.py). You can overwrite these as follows:

from spatial_access.p2p import TransitMatrix
from spatial_access.Configs import Configs
custom_config = Configs()
# set fields of custom_cofig
tm = TransitMatrix(..., configs=custom_config)
# continue with computation

Maintainance

Instructions for building locally (only for developers):

  • Additional requirements: cython and jinja2
  • To regenerate .pyx files, run: bash cythonize_extension.sh (TravisCI will do this automatically on deployment)
  • To install locally, run: sudo python3 setup.py install from spatial_access root directory
  • Unit tests require the pytest package. From package root directory, run python3 -m pytest tests/ to run all unit tests.

PyPi Maintenance

The package lives at: https://pypi.org/project/spatial-access/

When a branch is pulled into Master and builds/passes all unit tests, Travis CI will automatically deploy the build to PyPi.

To update PyPi access credentials, see .travis.yml and follow the instructions at https://docs.travis-ci.com/user/deployment/pypi/ to generate a new encrypted password.

Installing Ubuntu 18 LTS with dependencies from scratch (recommended for Windows users)

  1. Follow the instructions at this link: https://linus.nci.nih.gov/bdge/installUbuntu.html to set up a virtual machine
  2. sudo apt-get update
  3. sudo add-apt-repository universe
  4. sudo apt-get -y install python3-pip
  5. Continue with Installation Instructions (above)

Questions/Feedback?

spatial@uchicago.edu

Acknowledgments

Developed by Logan Noel at the University of Chicago's Center for Spatial Data Science (CSDS) with support from the Public Health National Center for Innovations (PHNCI), the University of Chicago, and CSDS.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

travel_time-1.0.2.tar.gz (144.7 kB view details)

Uploaded Source

Built Distributions

travel_time-1.0.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

travel_time-1.0.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

travel_time-1.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (679.1 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

travel_time-1.0.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

travel_time-1.0.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

travel_time-1.0.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (332.2 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

travel_time-1.0.2-cp310-cp310-musllinux_1_1_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

travel_time-1.0.2-cp310-cp310-musllinux_1_1_i686.whl (4.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

travel_time-1.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

travel_time-1.0.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (3.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

travel_time-1.0.2-cp310-cp310-macosx_10_9_x86_64.whl (391.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

travel_time-1.0.2-cp39-cp39-musllinux_1_1_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

travel_time-1.0.2-cp39-cp39-musllinux_1_1_i686.whl (4.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

travel_time-1.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

travel_time-1.0.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (3.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

travel_time-1.0.2-cp39-cp39-macosx_10_9_x86_64.whl (391.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

travel_time-1.0.2-cp38-cp38-musllinux_1_1_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

travel_time-1.0.2-cp38-cp38-musllinux_1_1_i686.whl (4.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

travel_time-1.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

travel_time-1.0.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (3.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

travel_time-1.0.2-cp38-cp38-macosx_10_9_x86_64.whl (390.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

travel_time-1.0.2-cp37-cp37m-musllinux_1_1_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

travel_time-1.0.2-cp37-cp37m-musllinux_1_1_i686.whl (4.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

travel_time-1.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

travel_time-1.0.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (3.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

travel_time-1.0.2-cp37-cp37m-macosx_10_9_x86_64.whl (389.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

travel_time-1.0.2-cp36-cp36m-musllinux_1_1_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

travel_time-1.0.2-cp36-cp36m-musllinux_1_1_i686.whl (4.0 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

travel_time-1.0.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

travel_time-1.0.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (3.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

travel_time-1.0.2-cp36-cp36m-macosx_10_9_x86_64.whl (374.7 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file travel_time-1.0.2.tar.gz.

File metadata

  • Download URL: travel_time-1.0.2.tar.gz
  • Upload date:
  • Size: 144.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for travel_time-1.0.2.tar.gz
Algorithm Hash digest
SHA256 99f57c3ced2da84efaad81511fc6e1bb9ef03f4d8cac820ed10e6c92c2ea01db
MD5 fcc89815d4cbf35dedf574849ef967ff
BLAKE2b-256 76be2279c230c75a9abc55d12939ee6f5e36eb2ceea14a33ec426a2350852862

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for travel_time-1.0.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 606386a85d5ae30e2c28e5bc67914fbd7c237f2099249ae87822bec79b79e008
MD5 3c6501d8a4c37202439653debc0d8225
BLAKE2b-256 a0b2b65e4d32522a4099935607aab089a074c9aa4ca711fb0a5aa00424062a00

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for travel_time-1.0.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c20925ed66eb2da7da5e1362673d960212381df0f851c5602fab795f83340e23
MD5 3763bfb41cde373f7e5cb6280ffe05f5
BLAKE2b-256 79ed6904b18a63475aa7057ebb061f9e105347075a19bdab10bcaee26974ba11

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: travel_time-1.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 679.1 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for travel_time-1.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 611af35e509ef8371f7e7058b582d1baed9f7cdf14be5821866ab5800d2da0f5
MD5 4a2fc0fdc556d036a63f6882feb8f118
BLAKE2b-256 89562e1e3892cb5974d07b97b5e6040c5af49d86222e6908e693b6aa3d78a396

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for travel_time-1.0.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4e98072226fc489ef23246ed9f80a16d9ff590783430fcf9b7db87e70cb60a31
MD5 05d274473649e779e6f90081a55be615
BLAKE2b-256 1b93377eeb49bbfa078190fe9f112e042dd9b69e8db67ecc60b7625eb6cf61f1

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for travel_time-1.0.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d7945a9f3d786ce035e4d2d812949db4acba9d9e04e31d3b8585b7ae3405204b
MD5 d79f7387e5fd299b8251be7f2134d15e
BLAKE2b-256 3eafddee7b1abb28b1f235d5fe9ff15179e12934b7672d43397e2c80dd39f300

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: travel_time-1.0.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 332.2 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for travel_time-1.0.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 654fd3b4402f2f56e35b2f045ee1e911ce4b99eff4588805d993d51d081342f3
MD5 df4ff0712f5cbe06ca5e0feec5a379bc
BLAKE2b-256 ebfbd6a782ef2609f19521b011594c16ba306396d031b91c58eafb611491db07

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: travel_time-1.0.2-cp310-cp310-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.10, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for travel_time-1.0.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3718d6530af9cfd9141e664af3293b17c4b556ebd2a8a19b665f4543b292ead9
MD5 93b87b6f9a21f5d121769c5c73669485
BLAKE2b-256 6d94a04a184125d11ba1d9c060c93a3dd29c06f5eee5bf1bd129d9e626255e19

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

  • Download URL: travel_time-1.0.2-cp310-cp310-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.10, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for travel_time-1.0.2-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3bcbc1808668f3902cfe589ccf9edc4423c5d1fabf3626e7f171d4514a17531e
MD5 cb76dbcdf87a892280a15b2866b3b961
BLAKE2b-256 4eae08f81b9c555dd4564be37f42ffaa9cbaf7dd77df9302e3d738595119ac0a

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for travel_time-1.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d95f967c9914703964375cbaeb6673b357112e6fc9c895a686de44845b275423
MD5 d830607af39fff58fd11e953c94ec492
BLAKE2b-256 7cd3a623d02381250b2f19defe6b1c254ce8b90cbe6e193872e4804a65e9cc6f

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for travel_time-1.0.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 05b489a3a0185997495994d3dd24cfa667544589ce6a7ea2c38aac83c365559f
MD5 035d5176f4319669a774b04385cb845e
BLAKE2b-256 26d900e0823c66c0adee7e28e04411a26145d5057e6e314a154b2410cdc10a57

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: travel_time-1.0.2-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 391.2 kB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for travel_time-1.0.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 543975cf8b83c807cefc0148a1a72af2d64e6c9fc302c811ffd46dd5cdd0b515
MD5 5476beda6490f79928270de78b024bb3
BLAKE2b-256 616dd4000536808cf5e8781f2d84daa4cf712e736959d8f8f0ad98ee1c8d4f4b

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: travel_time-1.0.2-cp39-cp39-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for travel_time-1.0.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b17431160437331144247b98b4a36bbfe46faf7a58023a179a5a179b5cc21f7d
MD5 a237051dfe2605bbd179ddb4a66e127d
BLAKE2b-256 d575863c6f6da2d0cad934c7e4fc5799958a13bcd8d6e1f014291da8afff2c55

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

  • Download URL: travel_time-1.0.2-cp39-cp39-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for travel_time-1.0.2-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 43f7751b4192c231275af4c6c9cd47344f2908f73cfd6185d6367089ef018111
MD5 c91971b49c6ab39f74c65930e1001fd5
BLAKE2b-256 42a66cca678af0972e2aab368673cb7647ccaff0bc7f4a7a69035828bfd5b72b

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for travel_time-1.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b45ced73e97a27e0013cc320c063d168c40e64318bb05948ff33517d599e8097
MD5 a77dc087ab8dd65d064486cbb7f3aa6e
BLAKE2b-256 2006f8413ce2022cc5d7b5978be58067f9b4d83bd61ce7d10d46929307b99c48

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for travel_time-1.0.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4a111af3d1f4f60869875405b5794f634fb63506544381483d938dc96c002b79
MD5 760a3720868d3429bfdb7124f4b6de52
BLAKE2b-256 8ea9c69f396cc9ebf50457edcfa4ba127e7c6b4fe3112204e2826f1459426b55

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: travel_time-1.0.2-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 391.2 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for travel_time-1.0.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 037ab115e1240fa7d71f4190d8bff2b5867db100d1457fea9090a867fd07c03e
MD5 d4e6817911b388640ff8393ab127722b
BLAKE2b-256 703566af4acfec73a62e77e249bed0ccc8f60473613aafbf09b2fda873b0fa43

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: travel_time-1.0.2-cp38-cp38-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for travel_time-1.0.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 40ef36b7f622e4552f88521a3ae867e94d95f7a5d34fad55322714220905ad63
MD5 1c76929c51bd0ca67391b4eb20ca90bb
BLAKE2b-256 dce181879f6549d47c38a0b37b2a0f518136d3243a38a864572c7cf556bd6a7d

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

  • Download URL: travel_time-1.0.2-cp38-cp38-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for travel_time-1.0.2-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 822ce2740e19212ba78df6b418989886e404d47ec8888a4234b29c77a5206da4
MD5 aa98dbf02dbba9651fdf5dfc04b60725
BLAKE2b-256 28609b3aff17983dcb0b876b136cdc3c270818ce065230e37b5921da5e0977df

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for travel_time-1.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 40c53bdf14495bed79d5e617ee285ba77fa0b89f7ac90f9bb639005699c337d9
MD5 9d9ebe7b0b19d32e1fe63fff0812b7c3
BLAKE2b-256 658bb2af4d07c24db059117f366c02c4eefb615507a3e952e7dd8a878e581d26

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for travel_time-1.0.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c02be18e15834742a8391c52ca22c9997d281764e763da2d794279ccc7e892d7
MD5 a711de0c22448b3b5138e1f246f36cf2
BLAKE2b-256 775eb5eeeaa3bd27a1577ce5da3a5338ebc71823c81e1ef389609c9f20757ccd

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: travel_time-1.0.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 390.3 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for travel_time-1.0.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e8b9d6c558276796ad4c86731487879c370f4d4912ba4a1df2035fb5a85a8399
MD5 df1d15c6834aaf53fa563e5de80fd82c
BLAKE2b-256 64d99e90669a7a291b3dc2a7001ed4307751c7ac0aa769a90766813b20de2bb7

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: travel_time-1.0.2-cp37-cp37m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for travel_time-1.0.2-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5608da9140473f4da03235b3aa3423b6fe8a811ec28b0483a3e989389470e5e7
MD5 6402ba8a9a58c2d7e0e2e5ecfe0b5db9
BLAKE2b-256 5eafa299663174d0678e3688379486d03a57ac1d4cbe229c81e7e6953db18697

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: travel_time-1.0.2-cp37-cp37m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for travel_time-1.0.2-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 69af0b3d8629706fd707b8efb18863ee792802065f0afaf65bda9bd9523586b4
MD5 0697fdd257684e761a48130ce7e9edeb
BLAKE2b-256 825a71536287dce4590909aba60e1c99cbb043130430ef2656613f16e3fc1e14

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for travel_time-1.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b46a4089472bcd6d8d3ed850f87123acd56f0cc656d3a5d9ffcfa47fdbfd4d07
MD5 c9074c3f51da1fd2afdb86ff77a75735
BLAKE2b-256 b521ad8e4e4c86a0570ec520212214b62cf65ba48159de3915e2f49f245cd80a

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for travel_time-1.0.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f8de5458ff23c606250aa5daf954b33c8a74c7af936ff0bca847e8f94b60ec5b
MD5 cc233479aa88104388dcb1f1c2061db5
BLAKE2b-256 f8a58ab315915f05a7920978474dea3a71c2e4269fe1648477309c9c17dd9f2f

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: travel_time-1.0.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 389.7 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for travel_time-1.0.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 649829cd31d3f45aa366e0104ff8ee475cf7c2e50ddb45b081606b57333e8069
MD5 c1221e37fc5dc50bb1cc5a25f116680a
BLAKE2b-256 fd7c40768d80af16068d1d215dcb094c5a0f105eb07764177a8b6e2e92bd997c

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: travel_time-1.0.2-cp36-cp36m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for travel_time-1.0.2-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b01b8aad3119977f9b79c975da06ad2760d13291fca25545fb0ea73bd55aee92
MD5 86b57b76dde64535bc36ab2b5f6ee122
BLAKE2b-256 27de299c26019b123dd65e6752195ed02491c2d3efe3e960dcdf915aaf0f9608

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: travel_time-1.0.2-cp36-cp36m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 4.0 MB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for travel_time-1.0.2-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 1dd6540fad73d2cd396792f5e40c2ea3b8375a8a4f64f6627e166848d5950f07
MD5 84f5ac75b358ad297afc01c10ab0a6fb
BLAKE2b-256 e3fc97ade9b00e03bee02413d86fb3648b9e55c8c8a7206a1757ad0f193d016c

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for travel_time-1.0.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e22ac7db7947a299239b6a763304d4f586cf840c94dc07309fb1071f039f635c
MD5 fcebf4a6efe80333faec688fcc261497
BLAKE2b-256 4f2fb3984e26dd94275240cce767d5844b2004809e1375a8fd302404d64cdf43

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for travel_time-1.0.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a509ec063c580a4e509f9916059bb8d284121a75dff2a9d1119f0d73633a5f6f
MD5 0ca4470b677d7cfa6419458791d75bfc
BLAKE2b-256 af8689e94489979d906c06c8210385f7a8899f3d56ed84f253ced222c6e80901

See more details on using hashes here.

File details

Details for the file travel_time-1.0.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: travel_time-1.0.2-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 374.7 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for travel_time-1.0.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fd61b78ce9dbe1eb495eb1232fc7cb5268f959e747452411cd188e4dfa2f1e5f
MD5 d864101b6af2fa1daf64f1b0f6da3a4f
BLAKE2b-256 db1ec7937fa2628a111b007cb15420aa6a33af77c9605ef8f918db9ddf00e4b9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page