Skip to main content

Tree-like morphology data processing

Project description

treem - neuron morphology processing tool

Module provides data structure and command-line tools for accessing and manipulating the digital reconstructions of the neuron morphology in Stockley-Wheal-Cannon format (SWC).

PyPI version License: MIT Build Status codecov.io Documentation Status Citation

Main classes

Access to morphological data from the source code is supported by the classes Tree, Node, Morph and SWC.

  • Tree - Recursive tree data structure
  • Node - Morphology data storage
  • Morph - Neuron morphology representation
  • SWC - Definitions of the data format

Commands

Common operations with SWC files are possible via the swc command-line tool:

swc <command> [options] file

or sometimes more convenient as

swc <command> file [file ...] [options] 

List of swc commands:

  • check - Test morphology reconstruction for structural consistency
  • convert - Convert morphology to compliant SWC format
  • find - Locate single nodes in the reconstruction
  • measure - Calculate morphometric features
  • modify - Manipulate morphology reconstruction
  • render - Display 3D model of the reconstruction
  • repair - Correct reconstruction errors
  • view - Show morphology structure

Installation

Install the latest stable release:

pip3 install treem

Install a development version:

pip3 install git+https://github.com/a1eko/treem

See also pip3 documentation for installation alternatives.

Dependencies

Module treem has minimal runtime dependencies:

  • python >= 3.7
  • matplotlib
  • numpy
  • PyOpenGL (optional) enables swc render command

For testing and documentation, treem needs development packages with third-party extensions:

  • sphinx with napoleon and programoutput
  • pytest with pytest-cov
  • coverage

Documentation

Documentation is available online at Read the Docs.

Funding

Horizon 2020 Framework Programme (785907, HBP SGA2); Horizon 2020 Framework Programme (945539, HBP SGA3); Vetenskapsrådet (VR-M-2017-02806, VR-M-2020-01652); Swedish e-science Research Center (SeRC); KTH Digital Futures.

We acknowledge the use of Fenix Infrastructure resources, which are partially funded from the European Union's Horizon 2020 research and innovation programme through the ICEI project under the grant agreement No. 800858.

The computations and testing were enabled by resources provided by the Swedish National Infrastructure for Computing (SNIC) at PDC KTH partially funded by the Swedish Research Council through grant agreement no. 2018-05973.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

treem-1.1.0.tar.gz (31.8 kB view details)

Uploaded Source

Built Distribution

treem-1.1.0-py3-none-any.whl (39.2 kB view details)

Uploaded Python 3

File details

Details for the file treem-1.1.0.tar.gz.

File metadata

  • Download URL: treem-1.1.0.tar.gz
  • Upload date:
  • Size: 31.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for treem-1.1.0.tar.gz
Algorithm Hash digest
SHA256 5ada96f97238ddfa96c83833923236816b5f7244c85db63b7c08d4e89b9a5abb
MD5 209e7990fb4a0f34d6b68f144799f7ca
BLAKE2b-256 cd3cd22d1a4007e4eb5146c4004706451620192b93600b7f11adbe092b2a1f95

See more details on using hashes here.

File details

Details for the file treem-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: treem-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 39.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for treem-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 19d17565a40c11c0d1480880daa3d365f7bda6aca47e3b2f03fa1285a1591cac
MD5 cb08c623ed36f1b8cf56aea852220e6d
BLAKE2b-256 2ed83ccd0dd7d245fbec2fc559a864989ccd3718b75de7e759b869612c7f8c5c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page