A dev tool for performing queries on json objects.
Project description
treepath is a query language for selecting nodes from a json data-structure. The query expressions are similar to jsonpath and Xpath, but are written in python syntax.
Solar System Sample Data
Sample data used by the examples in this README.
solar_system = { ... }
{
"star": {
"name": "Sun",
"diameter": 1391016,
"age": null,
"planets": {
"inner": [
{
"name": "Mercury",
"Number of Moons": "0",
"diameter": 4879,
"has-moons": false
},
{
"name": "Venus",
"Number of Moons": "0",
"diameter": 12104,
"has-moons": false
},
{
"name": "Earth",
"Number of Moons": "1",
"diameter": 12756,
"has-moons": true
},
{
"name": "Mars",
"Number of Moons": "2",
"diameter": 6792,
"has-moons": true
}
],
"outer": [
{
"name": "Jupiter",
"Number of Moons": "79",
"diameter": 142984,
"has-moons": true
},
{
"name": "Saturn",
"Number of Moons": "82",
"diameter": 120536,
"has-moons": true
},
{
"name": "Uranus",
"Number of Moons": "27",
"diameter": 51118,
"has-moons": true
},
{
"name": "Neptune",
"Number of Moons": "14",
"diameter": 49528,
"has-moons": true
}
]
}
}
}
Typical example.
When working with json data-structures, there is a need to fetch specific pieces of data in the tree. A common approach to this problem is to write structural code. This approach can become quite complex depending on the json structure and search criteria.
A more declarative approach is to use a query language. It does a better job at communicating the intent of what is being searched for.
Here are two examples that fetched the planet Earth from the sample solar-system data.
Structured Python Syntax | declarative Python Syntax Using treepath |
---|---|
def get_planet(name, the_solar_system):
try:
inner = the_solar_system['star']['planets']['inner']
for planet in inner:
if name == planet.get('name', None):
return planet
except KeyError:
pass
raise Exception(f"The planet {name} not found")
earth = get_planet('Earth', solar_system)
|
earth = get(path.star.planets.inner[wc][has(path.name == 'Earth')], solar_system)
|
Both examples will return the following results; however, the declarative approach uses only one line of code to construct the same search algorithm.
{'name': 'Earth', 'Equatorial diameter': 1.0, 'has-moons': True}
query example.
Description | Xpath | jsonpath | treepath |
---|---|---|---|
Find planet earth. | /star/planets/inner[name='Earth'] | $.star.planets.inner[?(@.name=='Earth')] | path.star.planets.inner[wc][has(path.name == 'Earth')] |
List the names of the inner planets. | /star/planets/inner[*].name | $.star.planets.inner[*].name | path.star.planets.inner[wc].name |
List the names of all planets. | /star/planets/*/name | $.star.planets.[*].name | path.star.planets.wc[wc].name |
List the names of all the celestial bodies. | //name | $..name | path.rec.name |
List all nodes in the tree Preorder | //* | $.. | path.rec |
Get the third rock from the sun | /star/planets/inner[3] | $.star.planets.inner[2] | path.star.planets.inner[2] |
List first two inner planets | /star/plnaets.inner[position()<3] | $.star.planets.inner[:2] | path.star.planets.inner[0:2] |
$.star.planets.inner[0, 1] | path.star.planets.inner[0, 2] | ||
List planets smaller than earth | /star/planets/inner[Equatorial_diameter < 1] | $.star.planets.inner[?(@.['Equatorial diameter'] < 1)] | path.star.planets.inner[wc][has(path["Equatorial diameter"] < 1)] |
List celestial bodies that have planets. | //*[planets]/name | $..*[?(@.planets)].name | path.rec[has(path.planets)].name |
Search Function
get
Get the star name from the solar_system.
sun = get(path.star.name, solar_system)
assert sun == 'Sun'
When there is no match, a MatchNotFoundError is thrown
try:
get(path.star.human_population, solar_system)
assert False, "Not expecting humans on the sun"
except MatchNotFoundError:
pass
Return a default value when match is not found.
human_population = get(path.star.human_population, solar_system, default=0)
assert human_population == 0
find
Find all the inner planet names. Each match is found just in time.
inner_planets = [planet for planet in find(path.star.planets.inner[wc].name, solar_system)]
assert len(inner_planets) == 4
get_match
Get the star age. The get_match function returns a match object, where get function returns the value The match object tells us the age attribute exist when its value is null.
match = get_match(path.star.age, solar_system)
assert match is not None
assert match.data is None
When there is no match, the MatchNotFoundError is thrown.
try:
get_match(path.star.human_population, solar_system)
assert False, "Not expecting humans on the sun"
except MatchNotFoundError:
pass
Return a None when match is not found.
match = get_match(path.star.human_population, solar_system, must_match=False)
assert match is None
find_matches
The find_matches function returns an Iterator of all matches. The match object remembers its index.
for match in find_matches(path.star.planets.inner[wc], solar_system):
assert match.data == solar_system["star"]["planets"]["inner"][match.data_name]
nested_get_match
The nested_get_match function allows the next match to start the search relative from another match.
parent_match = get_match(path.star.planets.inner, solar_system)
earth_match = nested_get_match(path[2].name, parent_match)
assert earth_match.path == "$.star.planets.inner[2].name"
assert earth_match.data == "Earth"
When there is no match, MatchNotFoundError is thrown.
try:
nested_get_match(path[5].name, parent_match)
assert False, "Not expecting humans on the sun"
except MatchNotFoundError:
pass
Return a None when match is not found.
match = nested_get_match(path[5].name, parent_match, must_match=False)
assert match is None
nested_find_matches
The find_matches function returns an Iterator of all matches.
for planet_match in find_matches(path.star.planets.inner[wc], solar_system):
name_match = nested_get_match(path.name, planet_match)
assert name_match.data == solar_system["star"]["planets"]["inner"][name_match.parent.data_name]["name"]
match_class
The match object has metadata about the match.
match = get_match(path.star.name, solar_system)
The string representation of match = [path=value].
assert repr(match) == "$.star.name=Sun"
A list containing each match in the path.
assert match.path_as_list == [match.parent.parent, match.parent, match]
The string representation of the path the match represents.
assert match.path == "$.star.name"
Key that points to the match value. Key can be index if the parent is a list
assert match.data_name == "name" and match.parent.data[match.data_name] == match.data
The value the match's path maps to.
assert match.data == "Sun"
The parent of the match.
assert match.parent.path == "$.star"
path
root
The path word point to root of the tree.
match = get_match(path, solar_system)
assert match.data == solar_system
In a filter path point to the current element.
match = get_match(path.star.name[has(path == 'Sun')], solar_system)
assert match.data == 'Sun'
key
The path uses dynamic attributes so dict keys do not need to double quotes.
inner_from_attribute = get(path.star.planets.inner, solar_system)
inner_from_string_keys = get(path["star"]["planets"]["inner"], solar_system)
assert inner_from_attribute == inner_from_string_keys == solar_system["star"]["planets"]["inner"]
keys with special characters
The dict keys that are not valid python syntax can be referenced as strings.
sun_equatorial_diameter = get(path.star.planets.inner[0]["Number of Moons"], solar_system)
assert sun_equatorial_diameter == solar_system["star"]["planets"]["inner"][0]["Number of Moons"]
If the json has lots of attributes with dashes, pathd can be used to interpret all underscore as dashes.
mercury_has_moons = get(pathd.star.planets.inner[0].has_moons, solar_system)
assert mercury_has_moons == solar_system["star"]["planets"]["inner"][0]["has-moons"]
wildcard keys
The wildcard word is useful for iterating over attributes
star_children = [child for child in find(path.star.wildcard, solar_system)]
assert star_children == [solar_system["star"]["name"],
solar_system["star"]["diameter"],
solar_system["star"]["age"],
solar_system["star"]["planets"], ]
The wc word is the short version.
star_children = [child for child in find(path.star.wc, solar_system)]
assert star_children == [solar_system["star"]["name"],
solar_system["star"]["diameter"],
solar_system["star"]["age"],
solar_system["star"]["planets"], ]
key comma delimited
The dict key can be access using comma delimited list.
last_and_first = [planet for planet in find(path.star["diameter", "name"], solar_system)]
assert last_and_first == [1391016, "Sun"]
list
The list can be access using index.
earth = get(path.star.planets.inner[2], solar_system)
assert earth == solar_system["star"]["planets"]["inner"][2]
list slice
The list can be access using slices. This example finds the first to planets.
first_two = [planet for planet in find(path.star.planets.outer[:2].name, solar_system)]
assert first_two == ["Jupiter", "Saturn"]
Finds the last two planets.
last_two = [planet for planet in find(path.star.planets.outer[-2:].name, solar_system)]
assert last_two == ["Uranus", "Neptune"]
Finds all outer planets in reverse.
last_two = [planet for planet in find(path.star.planets.outer[::-1].name, solar_system)]
assert last_two == ["Neptune", "Uranus", "Saturn", "Jupiter"]
Find the last inner planet, and the last outer planet.
The inner and outer list are still treated as separate list.
The wildcard is used to search both of these list.
last_two = [planet for planet in find(path.star.wc.wc[-1:].name, solar_system)]
assert last_two == ["Mars", "Neptune"]
list comma delimited
The list can be access using comma delimited list. This example finds the fourth and first planet.
last_and_first = [planet for planet in find(path.star.planets.outer[3, 0].name, solar_system)]
assert last_and_first == ["Neptune", "Jupiter"]
list wildcard
The wildcard word can be used as a list index.
all_outer = [planet for planet in find(path.star.planets.outer[wildcard].name, solar_system)]
assert all_outer == ["Jupiter", "Saturn", "Uranus", "Neptune"]
The wc word for short version.
all_outer = [planet for planet in find(path.star.planets.outer[wc].name, solar_system)]
assert all_outer == ["Jupiter", "Saturn", "Uranus", "Neptune"]
The dict wildcard and list wildcard can be combined.
all_planets = [p for p in find(path.star.planets.wc[wc].name, solar_system)]
assert all_planets == ['Mercury', 'Venus', 'Earth', 'Mars', 'Jupiter', 'Saturn', 'Uranus', 'Neptune']
recursion
The recursive word applies the query to every vertex in the subtree. This is an example the finds all the planets names.
all_planets = [p for p in find(path.star.planets.recursive.name, solar_system)]
assert all_planets == ['Mercury', 'Venus', 'Earth', 'Mars', 'Jupiter', 'Saturn', 'Uranus', 'Neptune']
The rec word for short version.
all_planets = [p for p in find(path.star.planets.rec.name, solar_system)]
assert all_planets == ['Mercury', 'Venus', 'Earth', 'Mars', 'Jupiter', 'Saturn', 'Uranus', 'Neptune']
Here is another example that finds all the celestial bodies names.
all_celestial_bodies = [p for p in find(path.rec.name, solar_system)]
assert all_celestial_bodies == ['Sun', 'Mercury', 'Venus', 'Earth', 'Mars', 'Jupiter', 'Saturn', 'Uranus',
'Neptune']
filter has
Filters can be used add additional search criteria. This search finds all celestial bodies that have planets
sun = get(path.rec[has(path.planets)].name, solar_system)
assert sun == "Sun"
This search finds all celestial bodies that have a has-moons attribute.
all_celestial_bodies_moon_attribute = [planet for planet in find(path.rec[has(pathd.has_moons)].name, solar_system)]
assert all_celestial_bodies_moon_attribute == ['Mercury', 'Venus', 'Earth', 'Mars', 'Jupiter', 'Saturn', 'Uranus',
'Neptune']
This search finds all celestial bodies that have moons.
all_celestial_bodies_moon_attribute = [planet for planet in
find(path.rec[has(pathd.has_moons == True)].name, solar_system)]
assert all_celestial_bodies_moon_attribute == ['Earth', 'Mars', 'Jupiter', 'Saturn', 'Uranus', 'Neptune']
filter comparison operators
Filters can be specified with comparison operator.
earth = [planet for planet in find(path.rec[has(path.diameter == 12756)].name, solar_system)]
assert earth == ['Earth']
earth = [planet for planet in find(path.rec[has(path.diameter != 12756)].name, solar_system)]
assert earth == ['Sun', 'Mercury', 'Venus', 'Mars', 'Jupiter', 'Saturn', 'Uranus', 'Neptune']
earth = [planet for planet in find(path.rec[has(path.diameter > 12756)].name, solar_system)]
assert earth == ['Sun', 'Jupiter', 'Saturn', 'Uranus', 'Neptune']
earth = [planet for planet in find(path.rec[has(path.diameter >= 12756)].name, solar_system)]
assert earth == ['Sun', 'Earth', 'Jupiter', 'Saturn', 'Uranus', 'Neptune']
earth = [planet for planet in find(path.rec[has(path.diameter < 12756)].name, solar_system)]
assert earth == ['Mercury', 'Venus', 'Mars']
earth = [planet for planet in find(path.rec[has(path.diameter <= 12756)].name, solar_system)]
assert earth == ['Mercury', 'Venus', 'Earth', 'Mars']
filter comparison operators with type conversion
Sometimes the value is the wrong type for the comparison operator. In this example the attribute "Number of Moons" is str type.
planets = [planet for planet in find(path.rec[has(path["Number of Moons"] > "5")].name, solar_system)]
assert planets == ['Jupiter', 'Saturn']
This is how to convert the type to an int before applying the comparison operator.
planets = [planet for planet in find(path.rec[has(path["Number of Moons"] > 5, int)].name, solar_system)]
assert planets == ['Jupiter', 'Saturn', 'Uranus', 'Neptune']
filer regular expression
Regular Expression can be used as a way to match values. This example finds the planets that end with s.
pattern = re.compile(r"\w+s")
earth = [planet for planet in find(path.rec[has(path.name, pattern.match)].name, solar_system)]
assert earth == ['Venus', 'Mars', 'Uranus']
filter as a function
A filter is just a single argument function that returns anything. Here is another way to do a comparison operator.
def smaller_than_earth(value):
return value < 12756
earth = [planet for planet in find(path.rec[has(path.diameter, smaller_than_earth)].name, solar_system)]
assert earth == ['Mercury', 'Venus', 'Mars']
predicate as a filter
A predicate is a single argument function that returns anything. The argument is the current match. The has function is a fancy predicate.
This example writes a custom predicate that find earths neighbours.
def my_neighbor_is_earth(match: Match):
i_am_planet = nested_get_match(path.parent.parent.parent.planets, match, must_match=False)
if not i_am_planet:
return False
index_before_planet = match.data_name - 1
before_planet = nested_get_match(path[index_before_planet][has(path.name == "Earth")], match.parent,
must_match=False)
if before_planet:
return True
index_after_planet = match.data_name + 1
before_planet = nested_get_match(path[index_after_planet][has(path.name == "Earth")], match.parent,
must_match=False)
if before_planet:
return True
return False
earth = [planet for planet in find(path.rec[my_neighbor_is_earth].name, solar_system)]
assert earth == ['Venus', 'Mars']
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for treepath-1.0.0rc3-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 64e220f52ebcc72df2362156845739b265701f0e612a394e35453af785260a95 |
|
MD5 | 0c309243adf26c4314ac49772c289b17 |
|
BLAKE2b-256 | 061d2760fc07889eee0fadb50bbff0b9926d0edba06f63d7bccb67c7fdcdce24 |