Skip to main content

Python package treeplot vizualizes a tree based on a randomforest or xgboost model.

Project description

treeplot

Python PyPI Version License Downloads Downloads

  • treeplot is Python package to easily plot the tree derived from models such as decisiontrees, randomforest and xgboost. Developing explainable machine learning models is becoming more important in many domains. The most popular and classical explainable models are still tree based. Think of decision trees or random forest. The tree that is learned can be visualized and then explained. However, it can be a challange to simply plot the tree. Think of configuration issues with dot files, path locations to graphviz, differences across operating systems, differences across editors such as jupyter notebook, colab, spyder etc. This frustration led to this library, an easy way to plot the decision trees 🌲. It works for Random-forest, decission trees, xgboost and gradient boosting models. Under the hood it makes many checks, downloads graphviz, sets the path and then plots the tree.

Have fun!

Functions in treeplot

Treeplot can plot the tree for Random-forest, decission trees, xgboost and gradient boosting models:

  • treeplot.plot() : Generic function to plot the tree of any of the four models with default settings
  • treeplot.randomforest() : Plot the randomforest model. Parameters can be specified.
  • treeplot.xgboost() : Plot the xgboost model. Parameters can be specified.
  • treeplot.import_example('iris') : Import example dataset

Contents

Installation

  • Install treeplot from PyPI (recommended). treeplot is compatible with Python 3.6+ and runs on Linux, MacOS X and Windows.
  • It is distributed under the MIT license.

Quick Start

pip install treeplot
  • Alternatively, install treeplot from the GitHub source:
git clone https://github.com/erdogant/treeplot.git
cd treeplot
python setup.py install

Import treeplot package

import treeplot

Example RandomForest:

# Load example dataset
X,y = treeplot.import_example()
# Learn model
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0).fit(X, y)
# Make plot
ax = treeplot.plot(model)
# or directly
ax = treeplot.randomforest(model)

# If more parameters needs to be specified, use the exact function:
ax = treeplot.randomforest(model, export='pdf')

Example XGboost:

# Load example dataset
X,y = treeplot.import_example()
# Learn model
from xgboost import XGBClassifier
model = XGBClassifier(n_estimators=100, max_depth=2, random_state=0).fit(X, y)
# Make plot
ax = treeplot.plot(model)
# or directly
ax = treeplot.xgboost(model)

# If more parameters needs to be specified, use the exact function:
ax = treeplot.xgboost(model, plottype='vertical')

Maintainers

Contribute

  • Contributions are welcome.

Licence

See LICENSE for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

treeplot-0.1.14.tar.gz (7.4 kB view details)

Uploaded Source

Built Distribution

treeplot-0.1.14-py3-none-any.whl (8.5 kB view details)

Uploaded Python 3

File details

Details for the file treeplot-0.1.14.tar.gz.

File metadata

  • Download URL: treeplot-0.1.14.tar.gz
  • Upload date:
  • Size: 7.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2.post20210112 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.6.12

File hashes

Hashes for treeplot-0.1.14.tar.gz
Algorithm Hash digest
SHA256 8ee451ec09de924f8fdfbe4e67b232df6699314485a601c1311593155dfd09df
MD5 f89b1d4021d7fc661ea92de12d9792c3
BLAKE2b-256 d28881359385cbab22cbdf46a2ef72efe8eee59715b7634eb565aa932bd1f4c8

See more details on using hashes here.

File details

Details for the file treeplot-0.1.14-py3-none-any.whl.

File metadata

  • Download URL: treeplot-0.1.14-py3-none-any.whl
  • Upload date:
  • Size: 8.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2.post20210112 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.6.12

File hashes

Hashes for treeplot-0.1.14-py3-none-any.whl
Algorithm Hash digest
SHA256 988341b72975e9c2393ca746abb89f981c391497063754d440f75721ec59dc0d
MD5 d042a3ed90505bbb078ca56d1b23e7a8
BLAKE2b-256 a8987e567a055a2c801fb39df7b9c3841d82548a8db21b57259035433d45cc29

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page