TreeProfiler is command-line tool for profiling metadata table into phylogenetic tree with descriptive analysis and output visualization
Project description
TreeProfiler Tutorial
Table of Contents
- Introduction
- Installation
- Using TreeProfiler
- Parsing Input tree
- Annotate metadata into tree
- Plot annotated tree with layouts
- Interactive visualization interface
- Basic options of visualizing layouts
- Layouts for categorical data
- Layouts for boolean data
- Layouts for numerical data
- Layouts for multiple text data
- Layouts for multiple sequence alignment
- Layouts for eggnog-mapper pfam annotations
- Layouts for eggnog-mapper smart annotations
- Layouts for eggnog-mapper annotations
- Visualizing annotated internal nodes
- Layouts for Taxonomic data
- Conditional query in annotated tree
- Demo1 Explore GTDB and Progenome data
- Demo2 Explore Nif gene family tree with functional annotations data using eggnog-mapper with taxonomic annotation
Introduction
TreeProfiler is command-line tool for profiling metadata table into phylogenetic tree with descriptive analysis and output visualization
Installation
Dependencies
TreeProfiler requires
- Python version >= 3.7
- ETE Toolkit v4
- biopython
- selenium
- scipy
- matplotlib
Quick install via pip
# Install ETE Toolkit v4
pip install https://github.com/etetoolkit/ete/archive/refs/tags/4.1.0-beta.tar.gz
# Install TreeProfiler dependencies
pip install biopython selenium scipy matplotlib
# Install TreeProfiler tool via pip
pip install TreeProfiler
Quick Start with examples dataset
TreeProfiler provide various example dataset for testing in examples/
or https://github.com/compgenomicslab/TreeProfiler/tree/main/examples,
each directory consists a demo script *_demo.sh
for quick starting different functions in TreeProfiler which alreadyh as annotate-plot pipeline of example data. User can fast explore different example tree with different visualizations. Here is the demonstration:
# execute demo script of example1
cd examples/basic_example1/
sh ./example1_demo.sh
Annotate example tree with two metadata tables
start parsing...
Time for parse_csv to run: 0.001968860626220703
Time for load_metadata_to_tree to run: 0.0003094673156738281
Time for merge annotations to run: 0.05160331726074219
Time for annotate_taxa to run: 4.76837158203125e-07
Visualize properties categorical data random_type in rectangle_layout, numerical data sample1, sample2 in heatmap_layout and barplot_layout.
Current trees in memory: 0
Added tree example with id 0.
* Serving Flask app 'ete4.smartview.gui.server' (lazy loading)
* Environment: production
WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.
* Debug mode: on
* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
As the session starts in local server http://127.0.0.1:5000, annotated tree and selected properties are visualized at the interactive session. Here is detailed introduction of interactive session of visualization(here)
Check other tutorial scripts
# display demo script of each example
./examples/basic_example1/example1_demo.sh
./examples/automatic_query/highlight_demo.sh
./examples/automatic_query/collapse_demo.sh
./examples/automatic_query/prune_demo.sh
./examples/basic_example2/example2_demo.sh
./examples/taxonomy_example/ncbi/ncbi_demo.sh
./examples/taxonomy_example/gtdb/gtdb_demo.sh
./examples/pratical_example/progenome3/progenome_demo.sh
./examples/pratical_example/gtdb_r202/gtdbv202full_demo.sh
./examples/pratical_example/gtdb_r202/gtdbv202lite_demo.sh
./examples/pratical_example/emapper/emapper_demo.sh
Manual installation
Install ETE v4
Quick way
pip install https://github.com/etetoolkit/ete/archive/ete4.zip
For local development To install ETE in a local directory to help with the development, you can:
- Clone this repository (git clone https://github.com/etetoolkit/ete.git)
- Install dependecies
- If you are using conda:
conda install -c conda-forge cython bottle brotli numpy pyqt
- Otherwise, you can install them with
pip install <dependencies>
- Build and install ete4 from the repository's root directory:
pip install -e .
- If you are using conda:
(In Linux there may be some cases where the gcc library must be installed, which can be done with conda install -c conda-forge gcc_linux-64
)
Install TreeProfiler
Install dependencies
# install BioPython, selenium, scipy via conda
conda install -c conda-forge biopython selenium scipy matplotlib
# or pip
pip install biopython selenium scipy matplotlib
Install TreeProfiler
# install TreeProfiler
git clone https://github.com/compgenomicslab/TreeProfiler
cd TreeProfiler/
python setup.py install
Or
# install directly
pip install https://github.com/dengzq1234/TreeProfiler/archive/refs/tags/v1.1.0.tar.gz
Input files
TreeProfiler takes following file types as input
Input | Filetype |
---|---|
Tree | newick, ete |
Metadata | tar.gz, tsv |
- ete format is a novel format developed to solve the situation we encounter in the previous step, annotated tree can be recover easily with all the annotated data without changing the data type. Besides, the ete format optimized the tree file size after mapped with its associated data. Hence it's very handy for programers in their own script. At this moment we can only view the ete format in treeprofiler, but we will make the ete format more universal to other phylogenetic software.
- Metadata input could be single or multiple files, either tar.gz compressed file(s) which contains multiple .tsv or plain .tsv file(s).
Basic Usage
TreeProfiler has two main subcommand:
- annotate
- plot
The first one annotate
is used to annotate your input tree and corresponding metadata, TreeProfiler will map all the metadata into corresponding tree node. In this step, annotated tree will be generated in newick and ete format
treeprofiler annotate --tree tree.nw --input-type newick --metadata metadata.tsv --outdir ./
The second subcommand plot
is used to visualize tree with associated metadata. By default, treeprofiler will launch an interactive session at localhost for user to explore input tree.
treeprofiler plot --tree tree_annotated.nw --input-type newick
or
treeprofiler plot --tree tree_annotated.ete --input-type ete
Using TreeProfiler
In this Tutorial we will use TreeProfiler and demostrate basic usage with data in examples/
tree examples/
examples/
├── automatic_query
│ ├── basic_example1_metadata1.tsv
│ ├── basic_example1.nw
│ ├── collapse_demo.sh
│ ├── highlight_demo.sh
│ └── prune_demo.sh
├── basic_example1
│ ├── basic_example1_metadata1.tsv
│ ├── basic_example1_metadata2.tsv
│ ├── basic_example1.nw
│ └── example1_demo.sh
├── basic_example2
│ ├── diauxic.array
│ ├── diauxic.nw
│ ├── example2_demo.sh
│ ├── FluA_H3_AA.fas
│ ├── MCC_FluA_H3_Genotype.txt
│ └── MCC_FluA_H3.nw
├── pratical_example
│ ├── emapper
│ │ ├── 7955.ENSDARP00000116736.aln.faa
│ │ ├── 7955.ENSDARP00000116736.nw
│ │ ├── 7955.out.emapper.annotations
│ │ ├── 7955.out.emapper.pfam
│ │ ├── 7955.out.emapper.smart.out
│ │ ├── emapper_demo.sh
│ │ ├── nifH.faa.aln
│ │ ├── nifH.nw
│ │ ├── nifH.out.emapper.annotations
│ │ └── nifH.out.emapper.pfam
│ ├── gtdb_r202
│ │ ├── ar122_metadata_r202_lite.tar.gz
│ │ ├── bac120_metadata_r202_lite.tar.gz
│ │ ├── gtdbv202full_demo.sh
│ │ ├── gtdbv202lite_demo.sh
│ │ ├── gtdbv202.nw
│ │ ├── merge_gtdbtree.py
│ │ └── progenome3.tar.gz
│ └── progenome3
│ ├── progenome3.nw
│ ├── progenome3.tsv
│ └── progenome_demo.sh
└── taxonomy_example
├── gtdb
│ ├── gtdb_demo.sh
│ ├── gtdb_example1.nw
│ └── gtdb_example1.tsv
└── ncbi
├── ncbi_demo.sh
├── ncbi_example.nw
└── ncbi_example.tsv
Parsing Input tree
Tree format
TreeProfiler accpept input tree in .nw
or .ete
by putting --input-type {newick,ete}
flag to identify [default: ete]
. The difference between .nw
and .ete
,
-
newick
format is more universal and be able to used in different other phylogenetic software although associated data of tree nodes will be considered as plain text. -
ete
format is a novel format developed to solve the situation we encounter in the previous step, annotated tree can be recover easily with all the annotated data without changing the data type. Besides, the ete format optimized the tree file size after mapped with its associated data. Hence it's very handy for programers in their own script. At this moment we can only view the ete format in treeprofiler, but we will make the ete format more universal to other phylogenetic software. Hence using ete format inplot
subcommand is highly reccomended
Tree parser
TreeProfiler provides argument --internal-parser {name,support}
to specify newick
tree when it include values in internal node. [default: name]
newick | leaves | internal_node value | internal_parser |
---|---|---|---|
(A:0.5, B:0.5)Internal_C:0.5; | A, B | Internal_C | name |
(A:0.5, B:0.5)0.99:0.5; | A, B | 0.99 | support |
annotate
, Annotate metadata into tree
treeprofiler annotate -h
usage: treeprofiler annotate [-h] -t TREE [--annotated-tree] [--internal-parser {name,support}]
[--input-type {newick,ete}] [--prop2type PROP2TYPE]
[--rank-limit RANK_LIMIT] [--pruned-by PRUNED_BY]
[-d METADATA [METADATA ...]] [--no-colnames] [--aggregate-duplicate]
[--text-prop TEXT_PROP [TEXT_PROP ...]]
[--multiple-text-prop MULTIPLE_TEXT_PROP [MULTIPLE_TEXT_PROP ...]]
[--num-prop NUM_PROP [NUM_PROP ...]]
[--bool-prop BOOL_PROP [BOOL_PROP ...]]
[--text-prop-idx TEXT_PROP_IDX] [--num-prop-idx NUM_PROP_IDX]
[--bool-prop-idx BOOL_PROP_IDX] [--taxadb TAXADB]
[--taxon-column TAXON_COLUMN] [--taxon-delimiter TAXON_DELIMITER]
[--taxa-field TAXA_FIELD]
[--emapper-annotations EMAPPER_ANNOTATIONS]
[--emapper-pfam EMAPPER_PFAM] [--emapper-smart EMAPPER_SMART]
[--alignment ALIGNMENT] [--taxonomic-profile]
[--num-stat {all,sum,avg,max,min,std,none}]
[--counter-stat {raw,relative,none}] -o OUTDIR
annotate tree
optional arguments:
-h, --help show this help message and exit
SOURCE TREE INPUT:
Source tree input parameters
-t TREE, --tree TREE Input tree, .nw file, customized tree input
--annotated-tree input tree already annotated by treeprofiler if you want to skip the
annotate part.
--internal-parser {name,support}
To specify how to interpret internal nodes in newick format. [default:
name]
--input-type {newick,ete}
Specify input tree format. [newick, ete]. [default: ete]
--prop2type PROP2TYPE
config tsv file where determine the datatype of target properties, if
your input tree type is .ete, it's note necessary
Pruning parameters:
Auto pruning parameters
--rank-limit RANK_LIMIT
TAXONOMIC_LEVEL prune annotate tree by rank limit
--pruned-by PRUNED_BY
target tree pruned by customized conditions, such as --pruned-by "name
contains FALPE"
METADATA TABLE parameters:
Input parameters of METADATA
-d METADATA [METADATA ...], --metadata METADATA [METADATA ...]
<metadata.csv> .csv, .tsv. mandatory input
--no-colnames metadata table doesn't contain columns name
--aggregate-duplicate
treeprofiler will aggregate duplicated metadata to a list as a property
if metadata contains duplicated row
--text-prop TEXT_PROP [TEXT_PROP ...]
<col1,col2> names, column index or index range of columns which need to
be read as categorical data
--multiple-text-prop MULTIPLE_TEXT_PROP [MULTIPLE_TEXT_PROP ...]
<col1,col2> names, column index or index range of columns which need to
be read as categorical data which contains more than one value and
seperate by ',' such as GO:0000003,GO:0000902,GO:0000904,GO:0003006
--num-prop NUM_PROP [NUM_PROP ...]
<col1,col2> names, column index or index range of columns which need to
be read as numerical data
--bool-prop BOOL_PROP [BOOL_PROP ...]
<col1,col2> names, column index or index range of columns which need to
be read as boolean data
--text-prop-idx TEXT_PROP_IDX
1,2,3 or [1-5] index of columns which need to be read as categorical data
--num-prop-idx NUM_PROP_IDX
1,2,3 or [1-5] index columns which need to be read as numerical data
--bool-prop-idx BOOL_PROP_IDX
1,2,3 or [1-5] index columns which need to be read as boolean data
--taxadb TAXADB <NCBI|GTDB> for taxonomic profiling or fetch taxatree [default: GTDB]
--taxon-column TAXON_COLUMN
<col1> name of columns which need to be read as taxon data
--taxon-delimiter TAXON_DELIMITER
delimiter of taxa columns. [default: None]
--taxa-field TAXA_FIELD
field of taxa name after delimiter. [default: 0]
--emapper-annotations EMAPPER_ANNOTATIONS
attach eggNOG-mapper output out.emapper.annotations
--emapper-pfam EMAPPER_PFAM
attach eggNOG-mapper pfam output out.emapper.pfams
--emapper-smart EMAPPER_SMART
attach eggNOG-mapper smart output out.emapper.smart
--alignment ALIGNMENT
Sequence alignment, .fasta format
Annotation arguments:
Annotation parameters
--taxonomic-profile Activate taxonomic annotation on tree
--num-stat {all,sum,avg,max,min,std,none}
statistic calculation to perform for numerical data in internal nodes,
[all, sum, avg, max, min, std, none]. If 'none' was chosen, numerical
properties won't be summarized nor annotated in internal nodes. [default:
all]
--counter-stat {raw,relative,none}
statistic calculation to perform for categorical data in internal nodes,
raw count or in percentage [raw, relative, none]. If 'none' was chosen,
categorical and boolean properties won't be summarized nor annotated in
internal nodes [default: raw]
OUTPUT options:
-o OUTDIR, --outdir OUTDIR
Directory for annotated outputs.
Annotate multiple metadata inputs into tree
TreeProfiler allows user to annotate more than one metadata inputs to tree. It requires to seperated the input tsv or tar.gz files with space in the arguments --metadata
or -d
, such as --metadata table1.tsv table2.tsv
. Here is the example
Check metadata
tree examples/basic_example1/
examples/basic_example1/
├── basic_example1_metadata2.tsv
├── basic_example1_miss.tsv
├── basic_example1_null.tsv
├── basic_example1.nw
├── basic_example1_metadata1.tsv
└── example1_demo.sh
head -5 examples/basic_example1/basic_example1_metadata1.tsv
#name sample1 sample2 sample3 sample4 sample5 random_type *bool_type bool_type2
Phy003I7ZJ_CHICK 0.05 0.12 0.86 0.01 0.69 medium 1 TRUE
Phy0054BO3_MELGA 0.64 0.67 0.51 0.29 0.14 medium 1 TRUE
Phy00508FR_NIPNI 0.89 0.38 0.97 0.49 0.26 low 1 FALSE
Phy004O1E0_APTFO 0.1 0.09 0.38 0.31 0.41 medium 0 TRUE
head -5 examples/basic_example1/basic_example1_metadata2.tsv
#name abs_data list_data
Phy003I7ZJ_CHICK 97 w,t,t
Phy0054BO3_MELGA 16 r,q,s
Phy00508FR_NIPNI 87 z,f,p
Phy004O1E0_APTFO 6 z,t,b
Run annotate
subcommand
## annotate tree with more than one metadata tsv, seperated by space
treeprofiler annotate \
--tree examples/basic_example1/basic_example1.nw \
--input-type newick \
--metadata examples/basic_example1/basic_example1_metadata1.tsv examples/basic_example1/basic_example1_metadata2.tsv \
-o examples/basic_example1/
Annotate metadata into tree internal nodes
At the above example, we only mapped metadata to leaf nodes, in this example, we will also profile internal nodes annotation and analysis of their children nodes.
TreeProfiler can infer automatically the datatype of each column in your metadata, including
list
(seperate by,
)string
(categorcial data)numerical
(numerical data, float or integer)booleans
Internal node will summurize children nodes information according to their datatypes.
demo tree
╭╴A
╴root╶┤
│ ╭╴B
╰╴D╶┤
╰╴C
demo metadata
#name | text_property | multiple_text_property | numerical_property | bool_property |
---|---|---|---|---|
A | vowel | a,b,c | 10 | True |
B | consonant | b,c,d | 4 | False |
C | consonant | c,d,e | 9 | True |
Treeprofiler will infer the datatypes of above metadata and adpot different summary method:
- | text_property | multiple_text_property | numerical_property | bool_property |
---|---|---|---|---|
datatype | string | list | float | bool |
method | counter | counter | average,sum,max,min,standard deviation | counter |
After annotation, internal nodes will be summarized. If property was summarize with counter
, in internal node will be named as <property_name>_counter
Users can choose either counter is raw or relative count by using --counter-stat
internal_node properties | statistic method |
---|---|
<feature name> _counter |
raw(default), relative |
internal_node | text_property_counter | multiple_text_property_counter | bool_property_counter |
---|---|---|---|
D | consonant--2 | b--1||c--2||d--2||e--1 | True--1||False--1 |
root | vowel--1||consonant--2 | a--2||b--2||c--3||d--2||e--1 | True--2||False--1 |
After annotation, internal nodes will be summarized. If property was numerical data, in internal node will be named as
internal_node properties | statistic method |
---|---|
<feature name> _avg |
average |
<feature name> _sum |
sum |
<feature name> _max |
maximum |
<feature name> _min |
minimum |
<feature name> _std |
standard deviation |
By default, numerical feature will be calculated all the descriptive statistic, but users can choose specific one to be calculated by using --num_stat [all, sum, avg, max, min, std]
In our demo, it would be:
internal_node | numerical_property_avg | numerical_property_sum | numerical_property_max | numerical_property_max | numerical_property_max |
---|---|---|---|---|---|
D | 6.5 | 13 | 9 | 4 | 2.5 |
root | 7.67 | 23 | 10 | 4 | 2.32 |
Excecute example data provided in examples/
treeprofiler annotate \
--tree examples/basic_example1/basic_example1.nw \
--input-type newick \
--metadata examples/basic_example1/basic_example1_metadata1.tsv \
--outdir ./examples/basic_example1/
Determine datatype in arguments
Although TreeProfiler can detect datatype of each column, users still can determine the datatype using the following arguments using
-
--text-prop
and--text-prop-idx
, to determine columms which need to be read as categorical data, example -
--multiple-text-prop
, to determine columns which contains multiple values sperated by,
, and will be process as list -
--num-prop
and--num-prop-idx
, to determine columms which need to be read as numerical data -
--bool-prop
and--bool-prop-idx
, to determine columms which need to be read as boolean data
Missing value detection
Metadata column which fullfills one of the following criterias will be consider as missing value:
- Entirely non-word characters. Such as
+
,-
,~
,.
, etc. - The exact strings
none
,None
,null
,Null
, orNaN
. - An empty string (zero characters).
Missing value will replaced by string 'NaN' in the corresponding property.
Unmapped Tree leaf property detection
If Metadata doesn't cover input tree leaf, tree leaf will be unannotated.
Mapping metadata without column names
if metadata doesn't contain column names, please add --no-colnames
as flag. TreeProfiler will automatically assign feature name by index order
Taxonomic annotation
If input metadada containcs taxon data, TreeProfiler allows users to process taxonomic annotation with either GTDB or NCBI database.
--taxadb
,NCBI
orGTDB
, choose the Taxonomic Database for annotation--taxonomic-profile
, activate taxonomic annotation--taxon-column
, choose the column in metadata which representa taxon. default is the first column which should be column of leaf_name--taxon-delimiter
, delimiter of taxa columns. default''
--taxa-field
, field of taxa name after delimiter. default0
Basic usage on GTDB
Here we demonstrate with examples/taxonomy_example/gtdb/gtdb_example1.nw
and examples/taxonomy_example/gtdb/gtdb_example1.tsv
. Taxonomic accesion IDs are located in the first column which should be the names of leaf. If accesions are located in different columns, using --taxon-column <column name>
to locate the the column.
# in case of gtdb_example1.tsv
head -3 examples/taxonomy_example/gtdb/gtdb_example1.tsv
name sample1 sample2 sample3 sample4 sample5 random_type bool_type bool_type2
RS_GCF_001560035.1 0.05 0.12 0.86 0.01 0.69 medium 1 True
RS_GCF_001560635.1 0.64 0.67 0.51 0.29 0.14 medium 1 True
# annotate tree with gtdb taxonomic annotation
treeprofiler annotate \
--tree examples/taxonomy_example/gtdb/gtdb_example1.nw \
--input-type newick \
--metadata examples/taxonomy_example/gtdb/gtdb_example1.tsv --taxonomic-profile \
--taxadb GTDB \
--outdir ./examples/taxonomy_example/gtdb/
Basic usage on NCBI
For instance of examples/taxonomy_example/ncbi/ncbi_example.nw
and examples/taxonomy_example/ncbi/ncbi_example.tsv
, it contains accession ID such as 83887.comp22273_c0_seq2_m.43352
, hence using --taxon-delimiter
and --taxa-field
to locate the taxonomic accession.
treeprofiler annotate \
--tree examples/taxonomy_example/ncbi/ncbi_example.nw \
--metadata examples/taxonomy_example/ncbi/ncbi_example.tsv \
--taxonomic-profile \
--taxon-column name \
--taxadb NCBI \
--taxon-delimiter . \
--taxa-field 0 \
--outdir ./examples/taxonomy_example/ncbi/
Identify taxon property in metadata
When Taxon properties are embeded in different column or field in metadata, treeprofiler provides --taxon-column
, --taxon-delimiter
and --taxa-field
to identify taxon term in order to process taxonomic annotation sucessfully. Here is summary of different cases with corresponding setting.
metadata | taxon to be identified | command line setting |
---|---|---|
#leafname col1 9598 wt |
9598 | default |
#leafname col1 7739.XP_002609184.1 wt |
7739 | --taxon-column <default> --taxon-delimiter . --taxa-field 0 |
#leafname ncbi_id leaf_A 7739 |
7739 | --taxon-column ncbi_id --taxon-delimiter <default> --taxa-field <default> |
#leafname ncbi_id leaf_A 7739.XP_002609184.1 |
7739 | --taxon-column ncbi_id --taxon-delimiter . --taxa-field 0 |
#leafname col1 RS_GCF_001560035.1 wt |
RS_GCF_001560035.1 | default |
#leafname gtdb_id leaf_A d__Archaea;p__Asgardarchaeota;c__Heimdallarchaeia;o__UBA460;f__Kariarchaeaceae;g__LC-2;s__LC-2 sp001940725 |
s__LC-2 sp001940725 | --taxon-column gtdb_id --taxon-delimiter ; --taxa-field -1 |
Annotation from EggNOG-mapper output
EggNOG-mapper, is a tool for fast functional annotation of novel sequences. It uses precomputed orthologous groups and phylogenies from the eggNOG database (http://eggnog5.embl.de) to transfer functional information from fine-grained orthologs only.
It generates three kind of ouput file,
- Raw standard output,
*.out.emapper.annotations
, that contains functional annotations and prthology predictions, for example:
## Mon Feb 27 09:05:50 2023
## emapper-2.1.9
## /data/shared/home/emapper/miniconda3/envs/eggnog-mapper-2.1/bin/emapper.py --cpu 20 --mp_start_method forkserver --data_dir /dev/shm/ -o out --output_dir /emapper_web_jobs/emapper_jobs/user_data/MM_knn6rw6j --temp_dir /emapper_web_jobs/emapper_jobs/user_data/MM_knn6rw6j --override -m diamond --dmnd_ignore_warnings --dmnd_algo ctg -i /emapper_web_jobs/emapper_jobs/user_data/MM_knn6rw6j/queries.fasta --evalue 0.001 --score 60 --pident 40 --query_cover 20 --subject_cover 20 --itype proteins --tax_scope auto --target_orthologs all --go_evidence non-electronic --pfam_realign denovo --num_servers 2 --report_orthologs --decorate_gff yes --excel
##
#query seed_ortholog evalue score eggNOG_OGs max_annot_lvl COG_category Description Preferred_name GOs EC KEGG_ko KEGG_Pathway KEGG_Module KEGG_Reaction KEGG_rclass BRITE KEGG_TC CAZy BiGG_Reaction PFAMs
....
## 272 queries scanned
## Total time (seconds): 45.73449420928955
## Rate: 5.95 q/s
- Pfam domain annotations,
*.out.emapper.pfam
, for example:
## Mon Feb 27 09:05:52 2023
## emapper-2.1.9
## /data/shared/home/emapper/miniconda3/envs/eggnog-mapper-2.1/bin/emapper.py --cpu 20 --mp_start_method forkserver --data_dir /dev/shm/ -o out --output_dir /emapper_web_jobs/emapper_jobs/user_data/MM_knn6rw6j --temp_dir /emapper_web_jobs/emapper_jobs/user_data/MM_knn6rw6j --override -m diamond --dmnd_ignore_warnings --dmnd_algo ctg -i /emapper_web_jobs/emapper_jobs/user_data/MM_knn6rw6j/queries.fasta --evalue 0.001 --score 60 --pident 40 --query_cover 20 --subject_cover 20 --itype proteins --tax_scope auto --target_orthologs all --go_evidence non-electronic --pfam_realign denovo --num_servers 2 --report_orthologs --decorate_gff yes --excel
##
# query_name hit evalue sum_score query_length hmmfrom hmmto seqfrom seqto query_coverage
...
## 272 queries scanned
## Total time (seconds): 28.74908423423767
## Rate: 9.46 q/s
- SMART domain annotation,
*.out.emapper.smart.out
, for example:
10020.ENSDORP00000023664 MAGE_N 10 63 220000.115599899
10020.ENSDORP00000023664 PTN 44 128 683.160049964146
10020.ENSDORP00000023664 Ephrin_rec_like 73 117 248282.169266432
10020.ENSDORP00000023664 PreSET 87 186 494.036044144428
....
TreeProfiler allows users annotate EggNOG-mapper standard output to target tree with following arguments
--emapper-annotations
, attach eggNOG-mapper outputout.emapper.annotations
.--emapper-pfam
, attach eggNOG-mapper pfam outputout.emapper.pfams
.--emapper-smart
, attach eggNOG-mapper smart outputout.emapper.smart
.
check EggNOG-mapper annotation example
Annotate tree format
TreeProfiler annotate
subcommand will generate the following output file
<input_tree>
+ _annotated.nw, newick format with annotated tree<input_tree>
+ _annotated.ete, ete format with annotated tree<input_tree>
+ _annotated_prop2type.txt, config file where store the datatype of each annotated properties<input_tree>
+ _annotated.tsv, metadata in tab-separated values format with annotated and summarized internal nodes information.
In the following plot
step, users can use either .nw
or .ete
by putting --input-type [newick, ete]
flag to identify. The difference between .nw
and .ete
format is
-
newick file is more universal and be able to used in different other phylogenetic software although associated data of tree nodes will be considered as plain text, so if you use newick format, alongside with the prop2type config file which was generated before by adding
--prop2type <prop2type_file>
-
ete format is a novel format developed to solve the situation we encounter in the previous step, annotated tree can be recover easily with all the annotated data without changing the data type. Besides, the ete format optimized the tree file size after mapped with its associated data. Hence it's very handy for programers in their own script. At this moment we can only view the ete format in treeprofiler, but we will make the ete format more universal to other phylogenetic software. Hence using ete format in
plot
subcommand is highly reccomended
plot
, Plot annotated tree with layouts
TreeProfiler provides a several of layout options for visualize features in metadata along with tree, depends on their datatype
treeprofiler plot -h
usage: treeprofiler plot [-h] -t TREE [--annotated-tree] [--internal-parser {name,support}]
[--input-type {newick,ete}] [--prop2type PROP2TYPE]
[--rank-limit RANK_LIMIT] [--pruned-by PRUNED_BY]
[--internal-plot-measure INTERNAL_PLOT_MEASURE]
[--collapsed-by COLLAPSED_BY] [--highlighted-by HIGHLIGHTED_BY]
[--column-width COLUMN_WIDTH] [--barplot-width BARPLOT_WIDTH]
[--padding-x PADDING_X] [--padding-y PADDING_Y]
[--binary-layout BINARY_LAYOUT [BINARY_LAYOUT ...]]
[--revbinary-layout REVBINARY_LAYOUT [REVBINARY_LAYOUT ...]]
[--colorbranch-layout COLORBRANCH_LAYOUT [COLORBRANCH_LAYOUT ...]]
[--label-layout LABEL_LAYOUT [LABEL_LAYOUT ...]]
[--rectangle-layout RECTANGLE_LAYOUT [RECTANGLE_LAYOUT ...]]
[--heatmap-layout HEATMAP_LAYOUT [HEATMAP_LAYOUT ...]]
[--barplot-layout BARPLOT_LAYOUT [BARPLOT_LAYOUT ...]]
[--taxonclade-layout] [--taxonrectangle-layout] [--emapper-layout]
[--domain-layout] [--alignment-layout]
[--profiling-layout PROFILING_LAYOUT [PROFILING_LAYOUT ...]]
[--multi-profiling-layout MULTI_PROFILING_LAYOUT [MULTI_PROFILING_LAYOUT ...]]
[--categorical-matrix-layout CATEGORICAL_MATRIX_LAYOUT [CATEGORICAL_MATRIX_LAYOUT ...]]
[--numerical-matrix-layout NUMERICAL_MATRIX_LAYOUT [NUMERICAL_MATRIX_LAYOUT ...]]
[--verbose] [--port PORT] [--plot PLOT] [--out-colordict]
annotate plot
optional arguments:
-h, --help show this help message and exit
SOURCE TREE INPUT:
Source tree input parameters
-t TREE, --tree TREE Input tree, .nw file, customized tree input
--annotated-tree input tree already annotated by treeprofiler if you want to skip the
annotate part.
--internal-parser {name,support}
To specify how to interpret internal nodes in newick format. [default:
name]
--input-type {newick,ete}
Specify input tree format. [newick, ete]. [default: ete]
--prop2type PROP2TYPE
config tsv file where determine the datatype of target properties, if
your input tree type is .ete, it's note necessary
Pruning parameters:
Auto pruning parameters
--rank-limit RANK_LIMIT
TAXONOMIC_LEVEL prune annotate tree by rank limit
--pruned-by PRUNED_BY
target tree pruned by customized conditions, such as --pruned-by "name
contains FALPE"
Conditional display arguments:
Conditional display parameters
--internal-plot-measure INTERNAL_PLOT_MEASURE
statistic measures to be shown in numerical layout for internal nodes,
[default: avg]
--collapsed-by COLLAPSED_BY
target tree nodes collapsed by customized conditions
--highlighted-by HIGHLIGHTED_BY
target tree nodes highlighted by customized conditions
Properties' layout arguments:
Prop layout parameters
--column-width COLUMN_WIDTH
customize column width of each layout.[default: 20]
--barplot-width BARPLOT_WIDTH
customize barplot width of barplot layout.[default: 200]
--padding-x PADDING_X
customize horizontal column padding distance of each layout.[default: 1]
--padding-y PADDING_Y
customize vertical padding distance of each layout.[default: 0]
--binary-layout BINARY_LAYOUT [BINARY_LAYOUT ...]
<prop1,prop2> names of properties which need to be plot as binary-layout
which highlights the postives
--revbinary-layout REVBINARY_LAYOUT [REVBINARY_LAYOUT ...]
<prop1,prop2> names of properties which need to be plot as revbinary-
layout which highlights the negatives
--colorbranch-layout COLORBRANCH_LAYOUT [COLORBRANCH_LAYOUT ...]
<prop1,prop2> names of properties where branches will be colored based on
different values.
--label-layout LABEL_LAYOUT [LABEL_LAYOUT ...]
<prop1,prop2> names of properties where values will be displayed on the
aligned panel.
--rectangle-layout RECTANGLE_LAYOUT [RECTANGLE_LAYOUT ...]
<prop1,prop2> names of properties where values will be label as
rectangular color block on the aligned panel.
--heatmap-layout HEATMAP_LAYOUT [HEATMAP_LAYOUT ...]
<prop1,prop2> names of numerical properties which need to be read as
heatmap-layout
--barplot-layout BARPLOT_LAYOUT [BARPLOT_LAYOUT ...]
<prop1,prop2> names of numerical properties which need to be read as
barplot_layouts
--taxonclade-layout Activate taxonclade_layout which clades will be colored based on taxonomy
of each node.
--taxonrectangle-layout
Activate taxonrectangle-layout which taxonomy of each node will be
display as rectangular blocks in aligned panel.
--emapper-layout Activate emapper_layout which display all the annotation from EggNOG-
mapper.
--domain-layout Activate domain_layout which display protein domain annotation in
sequence.
--alignment-layout Display Multiple Sequence Alignment layout in aligned panel.
--profiling-layout PROFILING_LAYOUT [PROFILING_LAYOUT ...]
<prop1,prop2> names of properties which need to be convert to presence-
absence profiling matrix of each value
--multi-profiling-layout MULTI_PROFILING_LAYOUT [MULTI_PROFILING_LAYOUT ...]
<prop1,prop2> names of properties containing values as list which need to
be convert to presence-absence profiling matrix
--categorical-matrix-layout CATEGORICAL_MATRIX_LAYOUT [CATEGORICAL_MATRIX_LAYOUT ...]
<prop1,prop2> names which need to be plot as categorical_matrix_layout
for categorical values
--numerical-matrix-layout NUMERICAL_MATRIX_LAYOUT [NUMERICAL_MATRIX_LAYOUT ...]
<prop1,prop2> names which need to be plot as numerical_matrix_layout for
numerical values
Visualizing output arguments:
Visualizing output parameters
--verbose show detail on prompt when visualizing taget tree.
--port PORT run interactive session on custom port.[default: 5000]
--plot PLOT output as pdf
--out-colordict print color dictionary of each property
Here we use examples/basic_example1/
and examples/basic_example2/
tree examples/basic_example1/
examples/basic_example1/
├── basic_example1_metadata2.tsv
├── basic_example1_miss.tsv
├── basic_example1_null.tsv
├── basic_example1.nw
├── basic_example1_metadata1.tsv
└── example1_demo.sh
tree examples/basic_example2
examples/basic_example2
├── diauxic.array
├── diauxic.nw
├── example2_demo.sh
├── FluA_H3_AA.fas
├── MCC_FluA_H3_Genotype.txt
└── MCC_FluA_H3.nw
head -5 examples/basic_example1/basic_example1_metadata1.tsv
#name sample1 sample2 sample3 sample4 sample5 random_type *bool_type bool_type2
Phy003I7ZJ_CHICK 0.05 0.12 0.86 0.01 0.69 medium 1 TRUE
Phy0054BO3_MELGA 0.64 0.67 0.51 0.29 0.14 medium 1 TRUE
Phy00508FR_NIPNI 0.89 0.38 0.97 0.49 0.26 low 1 FALSE
Phy004O1E0_APTFO 0.1 0.09 0.38 0.31 0.41 medium 0 TRUE
head -5 examples/basic_example1/basic_example1_metadata2.tsv
#name abs_data list_data
Phy003I7ZJ_CHICK 97 w,t,t
Phy0054BO3_MELGA 16 r,q,s
Phy00508FR_NIPNI 87 z,f,p
Phy004O1E0_APTFO 6 z,t,b
head -3 examples/basic_example2/diauxic.array
#NAMES col1 col2 col3 col4 col5 col6 col7
YGR138C -1.23 -0.81 1.79 0.78 -0.42 -0.69 0.58
YPR156C -1.76 -0.94 1.16 0.36 0.41 -0.35 1.12
head -3 examples/basic_example2/MCC_FluA_H3_Genotype.txt
#name PB2 PB1 PA HA NP NA M NS
A/Swine/Binh_Duong/03_10/2010 trig trig trig HuH3N2 trig HuH3N2 trig trig
A/Swine/Binh_Duong/03_08/2010 trig trig trig HuH3N2 trig HuH3N2 trig trig
## *annotate tree with more than one metadata tsv, seperated by `,`
treeprofiler annotate \
--tree examples/basic_example1/basic_example1.nw \
--input-type newick \
--metadata examples/basic_example1/basic_example1_metadata1.tsv examples/basic_example1/basic_example1_metadata2.tsv \
--bool-prop bool_type bool_type2 \
-o examples/basic_example1/
treeprofiler annotate \
--tree examples/basic_example2/diauxic.nw \
--input-type newick \
--metadata examples/basic_example2/diauxic.array \
--outdir examples/basic_example2/
treeprofiler annotate \
--tree examples/basic_example2/MCC_FluA_H3.nw \
--input-type newick \
--metadata examples/basic_example2/MCC_FluA_H3_Genotype.txt \
--outdir examples/basic_example2/
*if bool value is 1 or 0, treeprofiler will infer it as numerical data, hence we determine it as boolean value by using --bool-prop
arguments
Interactive visualization interface
TreeProfiler uses the new visualization framework implemented in ETE 4.0, which allows for the interactive exploration of huge phylogenies based on a context-based adaptive zooming strategy.
Overview of the TreeProfiler visualization interface. (A) The control panel allows users to customize visualization layout and features, and to perform text-based searches. (B) An annotated example tree, from examples/basic_example1/
after annotate
, is launched with a command plot
. Support values (red) and branch distance (grey) are displayed on top of branches. The properties of one of the nodes are shown on the top. The minimap (bottom right) facilitates navigation. (C) The node editor panel provides access to node-specific actions, such as creating subtrees, collapsing, pruning, rooting and more. (D) Visualized properties by order are, categorical data random_type
in rectangle-layout
, numerical data sample1
, sample2
, sample3
in heatmap-layout
and sample4
, sample5
in barplot-layout
, categorical data random-type
in profiling-layout
shown as presence-absence matrix. Layouts are shown with the order as input argument order from the command line. Names of properties are shown as titles on the top of each layout. (E) Legends each layout is shown on the top right corner with the same order as the layouts.
Basic options of visualizing layouts
Selected properties of tree will be visualized at the aligned panel alongside with the tree, here is some basic parameters for layouts.
--column-width
column width of each property in layout. [default: 20].--barplot-width
width of total scale of barplot layout.[default: 200]--padding-x
customize horizontal column padding distance of each layout.[default: 1]--padding-y
customize vertical padding distance of each layout.[default: 0]
Layouts for categorical data
Users can add the following flag to activate layouts for categorical data
--colorbranch-layout COLORBRANCH_LAYOUT
<prop1,prop2> names of properties where branches will be colored based on
different values.
--label-layout LABEL_LAYOUT
<prop1,prop2> names of properties where values will be displayed on the
aligned panel.
--rectangle-layout rectangle_layout
<prop1,prop2> names of properties where values will be label as rectangular
color block on the aligned panel.
--profiling-layout PROFILING_LAYOUT
<prop1,prop2> names of properties which need to be convert to presence-
absence profiling matrix of each value.
--categorical-matrix-layout CATEGORICAL_MATRIX_LAYOUT
<col1,col2> names, column index which need to be plot as categorical_matrix_layout for categorical columns.
example
## target column "random_type" in examples/basic_example1/basic_example1_metadata1.tsv
# List random_type feature as text in aligned panel using label_layout
treeprofiler plot --tree examples/basic_example1/basic_example1_annotated.ete --label-layout random_type
# Label random_type feature on branch with different colors in aligned panel using --colorbranch-layout
treeprofiler plot --tree examples/basic_example1/basic_example1_annotated.ete --colorbranch-layout random_type
# Label random_type feature with retangular block in aligned panel using --rectangle-layout
treeprofiler plot --tree examples/basic_example1/basic_example1_annotated.ete --rectangle-layout random_type
# Convert random_type feature into presence-absence profiling matrix using --profiling-layout
treeprofiler plot --tree examples/basic_example1/basic_example1_annotated.ete --profiling-layout random_type
# Label all feature with retangular block in aligned panel using --categorical-matrix-layout
treeprofiler plot --tree examples/basic_example2/MCC_FluA_H3_annotated.ete --categorical-matrix-layout PB2 PB1 PA HA NP NA M NS
label-layout
displays the corresponding value of selected property
of each leaf and categorized with colors.
colorbranch-layout
categorize values of selected property by coloring the leaf nodes.
rectangle-layout
categorizes values of selected property by displaying rectangular color block alongside the corresponing leaf node.
profiling-layout
convert categorical data of the selected property to presence-absence matrix.
categorical-matrix-layout
convert multiple categorical properties into categorical matrix, each value will be represent in different color. In this example we use MCC_FluA_H3.tree
, time-scaled phylogenetic tree of H3 influenza viruses inferred by BEAST using molecular clock model and MCC_FluA_H3_Genotype.txt
, Genotype table of the H3 influenza viruses(Yu, Guangchuang et al. (2017)). 8 gene segments PB2
,PB1
,PA
,HA
,NP
,NA
,M
,NS
as properties, and virus strain trig
, pdm
and HuH3N2
are categorized with different colors in the matrix.
Layouts for boolean data
Users can add the following flag to activate layouts for Boolean data
---binary-layout BINARYLAYOUT
<col1,col2> names, column index or index range of columns which need to be plot as binary_layout, label shown only positive value
--revbinary-layout REVBINARYLAYOUT
<col1,col2> names, column index or index range of columns which need to be plot as revbinary_layout, label shown only negative value
## target column "bool_type", "bool_type2" in examples/basic_example1/basic_example1_metadata1.tsv
# List postive bool_type feature in aligned panel using binary_layout
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.ete \
---binary-layout bool_type
# List negative bool_type feature in aligned panel using binary_layout
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.ete \
--revbinary-layout bool_type2
binary_layout
displays postive value as colored block and negative value as grey block
binary_layout
displays negative value as colored block and postive value as grey block
*Boolean data can be also visualized by categorical layouts, such as
# multiple columns seperated by ','
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.ete \
--rectangle-layout bool_type
Layouts for Numerical data
Users can add the following flag to activate layouts for Numerical data
--heatmap-layout HEATMAP_LAYOUT
<prop1,prop2> names of numerical properties which need to be read as heatmap_layout.
--barplot-layout BARPLOT_LAYOUT
<prop1,prop2> names of numericalproperties which need to be read as barplot_layouts.
--numerical-matrix-layout NUMERICAL_MATRIX_LAYOUT
<prop1,prop2> names which need to be plot as numerical_matrix_layout for numerical values.
## target column 'sample[1-5]' feature in examples/basic_example1/basic_example1_metadata1.tsv
# visualize sample1 feature in Barplot
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.ete \
--barplot-layout sample1,sample2,sample3,sample4,sample5
# visualize sample1-sample5 in Heatmap
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.ete \
--heatmap-layout sample1,sample2,sample3,sample4,sample5
# visualize col1-col7 in diauxic_annotated.nw with numerical profiling
treeprofiler plot \
--tree examples/basic_example2/diauxic_annotated.ete \
--numerical-matrix-layout col1,col2,col3,col4,col5,col6,col7
barplot-layout
display numerical data to barplot with scale, users can change the length of scale by using argument --barplot-width [default: 200]
heatmap-layout
display numerical data to heatmap, which will automatically scale the minimum and maximum value from white to red.
numerical-profiling-layout
display multiple numerical data column to numerical data trix, which will automatically scale the minimum and maximum value from blue to red. Comparing to heatmap-layout
, numerical-profiling-layout
can afford more data columns with faster memory.
Layouts for list data
here we use example in examples/basic_example1/basic_example1_metadata2.tsv
# column `list_data` contain multiple elements value which can be process as list data in treeprofiler
head examples/basic_example1/basic_example1_metadata2.tsv
#name abs_data list_data
Phy003I7ZJ_CHICK 97 w,t,t
Phy0054BO3_MELGA 16 r,q,s
Phy00508FR_NIPNI 87 z,f,p
Phy004O1E0_APTFO 6 z,t,b
Phy004PA1B_ANAPL 72 z,r,p
## annotate tree first
treeprofiler annotate \
--tree examples/basic_example1/basic_example1.nw \
--input-type newick \
--metadata examples/basic_example1/basic_example1_metadata2.tsv \
-o examples/basic_example1/
Column list_data
contain multiple elements value which can be process as list data in treeprofiler. Users can visualize list information using --multi-profiling-layout
, which will . In this case, we highly reccomend users using ete
using --input-type
in order to resume datatype list in annotated tree.
# visualize using multi_profiling_layout
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.ete \
--input-type ete \
--multi-profiling-layout list_data
Layouts for multiple sequence alignment
In order to visualize multiple sequence alignment alongside with the tree, first we need to annotate alignment using --alignment
in annotate
. Then activate alignment layout by adding --alignment-layout
# annotate
treeprofiler annotate \
--tree examples/basic_example2/MCC_FluA_H3.nw \
--input-type newick \
--alignment ./examples/basic_example2/FluA_H3_AA.fas \
--outdir examples/basic_example2/
# visualize
treeprofiler plot \
--tree examples/basic_example2/MCC_FluA_H3_annotated.ete \
--alignment-layout
alignment-layout
displays multiple sequence alignments with a tree. Whole MSA sequences were visualized with a tree in rectangular layout. Sacle of sequence with position roadmark located at the top.
Layouts for eggnog-mapper pfam annotations
if metadata is pfam annotations from eggnog-mapper, using --emapper-pfam
to annotate domain information in target tree and MUST be with the alignment using --alignment
to attach corresponding file.
Once tree is annotated, using --domain-layout
to visualize it.
treeprofiler annotate \
--tree examples/pratical_example/emapper/7955.ENSDARP00000116736.nw \
--input-type newick \
--emapper-pfam examples/pratical_example/emapper/7955.out.emapper.pfam \
--alignment examples/pratical_example/emapper/7955.ENSDARP00000116736.aln.faa \
-o examples/pratical_example/emapper/
treeprofiler plot \
--tree examples/pratical_example/emapper/7955.ENSDARP00000116736_annotated.ete \
--domain-layout
domain-layout
displays domain annotation with a tree. It requires sequence infomration --alignment
in annotate
step from MSA sequences to locate domain start and end position.
Layouts for eggnog-mapper smart annotations
if metadata is smart annotations from eggnog-mapper, using --emapper-smart
to annotate domain information in target tree and must be with the alignment using --alignment
to attach corresponding file.
Once tree is annotated, using --domain-layout
to visualize it.
treeprofiler annotate \
--tree examples/pratical_example/emapper/7955.ENSDARP00000116736.nw \
--input-type newick \
--emapper-smart examples/pratical_example/emapper/7955.out.emapper.smart.out \
--alignment examples/pratical_example/emapper/7955.ENSDARP00000116736.aln.faa \
-o examples/pratical_example/emapper/
treeprofiler plot \
--tree examples/pratical_example/emapper/7955.ENSDARP00000116736_annotated.ete \
--domain-layout
Layouts for eggnog-mapper annotations
If metadata is output from eggnog-mapper, using --emapper-annotations
automatically parse all information as metadata. Program will parse data of all the columns from emapper output. Once tree is annotated, using --emapper-layout
to visualize tree with all the metadata
seed_ortholog evalue score eggNOG_OGs max_annot_lvl COG_category Description Preferred_name GOs EC KEGG_ko KEGG_Pathway KEGG_Module KEGG_Reaction KEGG_rclass BRITE KEGG_TC CAZy BiGG_Reaction PFAMs
treeprofiler annotate \
--tree examples/pratical_example/emapper/7955.ENSDARP00000116736.nw \
--input-type newick \
--emapper-annotations examples/pratical_example/emapper/7955.out.emapper.annotations \
-o examples/pratical_example/emapper/
treeprofiler plot \
--tree examples/pratical_example/emapper/7955.ENSDARP00000116736_annotated.ete \
--input-type ete \
--emapper-layout
Visualizing annotated internal nodes
If internal nodes are annotated, TreeProfiler is also able to visualize annotated features automatically when layouts are activated
Internal nodes of categorical and boolean data
As internal nodes of categorical and boolean data are annotated as counter, for categorical data it generates a stacked bar of counter summary at the top of each internal node. And for boolean data, it generates a heatmap where represent positive(or negative) percentage of total data of each internal node.
Categorical data
Before collapsed After collapsed In this example, collapsed internal node shows a stacked bar which summarize categorical counter data of children nodes. 1/6 is red, 2/6 is blue and 3/6 is green.
Boolean data
Before collapsed After collapsed In this example, collapsed internal node shows a heatmap which represent the gradient level of positive/total ratio.
Internal nodes of numerical data
Internal nodes of numerical data are process descriptive statistic analysis by default, hence when users collapse any branch, barplot_layout or heatmap_layout will demonstrate representative value, avg
by default. representative value can be changed by using --internal-plot-measure
Numerical data
# select max instead of avg as internal node ploting representative
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.ete \
--heatmap-layout sample1,sample2,sample3,sample4,sample5 \
--internal-plot-measure max
Before collapsed
After collapsed avg as itnernal plot measure max as itnernal plot measure
Layouts for Taxonomic data
If target tree was annotated with --taxonomic-profiler
in previous annotate
step successfully, now activate Taxonomic layout using --taxonclade-layout
or --taxonrectangle-layout
to visualize taxonomic classification. All rank levels will be generated separately and users can switch each of them on/off.
## Annotate
# GTDB
treeprofiler annotate \
--tree examples/taxonomy_example/gtdb/gtdb_example1.nw \
--metadata examples/taxonomy_example/gtdb/gtdb_example1.tsv \
--taxon-column name \
--taxonomic-profile \
--taxadb GTDB \
--outdir ./examples/taxonomy_example/gtdb/
# NCBI
treeprofiler annotate \
--tree examples/taxonomy_example/ncbi/spongilla_example.nw \
--metadata examples/taxonomy_example/ncbi/spongilla_example.tsv \
--taxonomic-profile \
--taxon-delimiter . \
--taxa-field 0 \
--taxadb NCBI \
--outdir ./examples/taxonomy_example/ncbi/
## Visualize
treeprofiler plot \
--tree ./examples/taxonomy_example/gtdb/gtdb_example1_annotated.nw \ --taxonrectangle-layout
treeprofiler plot \
--tree examples/taxonomy_example/ncbi/spongilla_example_annotated.nw \ --taxonclade-layout
taxonrectangle-layout
shows taxonomic classification as rectangular block from root to leaf.
taxonclade-layout
color associated clade of each category of each rank.
Conditional query in annotated tree
TreeProfiler allows users to perform conditional process based on different circumstances
-
Conditional pruning, conditional pruning works both
annotate
andplot
subcommand--pruned-by
, prune the annotated tree by conditions, and remove the branches or clades which don't fit the condition.--rank-limit
, prune the taxonomic annotated tree based on rank of classification.
-
Conditional collapsing, conditional collapsing works in
plot
subcommand, allow users to collapsed tree internal nodes to clade under customized conditions--collapsed-by
, collapse tree branches whose nodes if the conditions, mainly on internal nodes
-
Conditional highlight, conditional highlight works in
plot
subcommand, allow users to highlight tree nodes under customized conditions--highlighted-by
, select tree nodes which fit the conditions
Query Syntax
Basic Query
All the conditional query shared the same syntax, a standard query consists the following
--pruned-by|collapsed-by|highlighted-by "<left_value> <operator> <right_value>"
- left value, the property of leaf node or internal node
- operators
=
!=
>
>=
<
<=
contains
- right value, custom value for the condition
Example
## annotate tree
treeprofiler annotate \
--tree examples/basic_example1/basic_example1.nw \
--input-type newick \
--metadata examples/basic_example1/basic_example1_metadata1.tsv \
--bool-prop bool_type bool_type2 \
--counter-stat relative \
-o examples/basic_example1/
# Conditional pruning, prune leaf node whose name contain "FALPE"
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.nw \
--input-type newick \
--pruned-by "name contains FALPE"
Left panel is tree before prune, right panel is result after prune
# Conditional highlight
# select tree node whose name contains `FALPE` character
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.nw \
--input-type newick \
--highlighted-by "name contains FALPE"
# select tree node whose sample1 feature > 0.50, here we using ete format which can resume the datatype
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.ete \
--input-type ete \
--highlighted-by "sample1 > 0.50" \
--heatmap-layout sample1
# if use tree in newick format, we need to attach the prop2type file which can resume the datatype
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.nw \
--input-type newick \
--prop2type examples/basic_example1/basic_example1_prop2type.txt \
--highlighted-by "sample1 > 0.50" \
--heatmap-layout sample1
Query in internal nodes
Query in internal nodes' properties is also available, in this case, left_value
of query will be the internal node property, remember to add the proper suffixes such as _avg
, _max
,etc, for the numerical data or _counter
for categorical and boolean data.
Example
# select tree internal node where sample1_avg feature < 0.50
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.ete \
--input-type ete \
--heatmap-layout sample1 \
--collapsed-by "sample1_avg < 0.50"
Syntax for internal node counter data
# collapse tree internal nodes, where `high` relative counter > 0.35 in random_type_counter property
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.ete \
--input-type ete \
--rectangle-layout random_type \
--collapsed-by "random_type_counter:high > 0.35" \
--column-width 70
AND and OR conditions
The syntax for the AND condition and OR condition in TreeProfiler is:
AND condition will be under one argument, syntax seperated by ,
, such as
# select tree node where sample1 feature > 0.50 AND sample2 < 0.2
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.ete \
--input-type ete \
--heatmap-layout sample1 sample2 sample3 sample4 sample5 \
--highlighted-by "sample1>0.50,sample2<0.2"
OR condition will be used more than one arguments
# select tree node where sample1 feature > 0.50 OR sample2 < 0.2
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.ete \
--input-type ete \
--heatmap-layout sample1 sample2 sample3 sample4 sample5 \
--highlighted-by "sample1>0.50" \
--highlighted-by "sample2<0.2"
conditional limit based on taxonomic level
Prune taxonomic annotated tree based on following taxonomic rank level,
kingdom
, phylum
, class
, order
, family
, genus
, species
, subspecies
# Case in GTDB
# before pruning
treeprofiler plot \
--tree examples/taxonomy_example/gtdb/gtdb_example1_annotated.ete \
--input-type ete \
--taxonclade-layout
before rank limit
# prune tree in visualization, rank limit to family level
treeprofiler plot \
--tree examples/taxonomy_example/gtdb/gtdb_example1_annotated.ete \
--input-type ete \
--rank-limit class \
--taxonclade-layout
After rank_limit As you see, class branches of target gtdb tree are all pruned and only left the internal branches which rank as class.
Demo1 Explore GTDB taxonomic tree with metadata and habitat information of progenome3
To illustrate the easiness and flexibility of TreeProfiler, we use it to annotate and visualize the version 202 of the GTDB prokaryotic phylogeny, which represents a species tree with 60,000 representative bacterial and archaeal species in here. GTDB provides the tree in plain newick format and massive datatable with various associated to such species. Apart from the metadata provided by the GTDB, here we also include annotations of genomes and species clusters to habitats from proGenomes3(Fullam et al. 2023).
Example can be found in directory ./examples/pratical/gtdb_r202/
. We already prepared the gtdb v202 taxonomic tree gtdbv202.nw
by merging Bacteria and Archaea trees, detailed steps are included in merge_gtdbtree.py
. Based on the difference of computational capacity, complete steps and pipeline can be found in gtdbv202full_demo.sh
and gtdbv202lite_demo.sh
.
- A glance of habitat information of progenome3
cd examples/pratical/gtdb_r202/
zcat progenome3.tar.gz|head -n 4
progenome3.tsv0000664000175000017500000343216414447266674012351 0ustar dengdenggtdb_genome_representative aquatic_habitat host_associated soil_habitat
RS_GCF_004210275.1 f t f
GB_GCA_014116815.1
RS_GCF_000730245.1 f t f
- Download metadata of archaea and bacteria from gtdb
wget https://data.gtdb.ecogenomic.org/releases/release202/202.0/ar122_metadata_r202.tar.gz
wget https://data.gtdb.ecogenomic.org/releases/release202/202.0/bac120_metadata_r202.tar.gz
- GTDB metadata annotation
Considering the size of GTDB metadata and phylogeney, here we provide two pipelines for user to choose base on their computational resources.
- GTDB partial annotation (lightweight), which we will extract only a few of columns from metadata for annotation
# Extract genome_size, protein_count, gc_percentage, ncbi_assembly_level, ncbi_genome_category columns from GTDB metadata
tar -xf ar122_metadata_r202.tar.gz -O | cut -f1,14,89,13,46,56 > ar122_metadata_r202_lite.tsv
tar -xf bac120_metadata_r202.tar.gz -O | cut -f1,14,89,13,46,56 > bac120_metadata_r202_lite.tsv
# start annotation
treeprofiler annotate \
--tree gtdbv202.nw \
--input-type newick \
--metadata \
ar122_metadata_r202_lite.tsv bac120_metadata_r202_lite.tsv progenome3.tar.gz \
--taxonomic-profile \
--taxadb GTDB \
-o ./
- GTDB full annotation, which requires >6G disk space and >15G RAM memory.
# Annotate metadatas to taxonomic tree(this step may take a few minutes)
treeprofiler annotate \
--tree gtdbv202.nw \
--input-type newick \
--metadata \
ar122_metadata_r202.tar.gz bac120_metadata_r202.tar.gz progenome3.tar.gz \
--taxonomic-profile \
--taxadb GTDB \
-o ./
- Visualizing annotated GTDB tree with GTDB metadata, which are
-
genome_size
-
protein_count
-
gc_percentage
-
ncbi_assembly_level
-
ncbi_genome_category
and progenome3 habitat information
-
aquatic_habitat
-
host_associated
-
soil_habitat
treeprofiler plot \
--tree gtdbv202_annotated.ete \
--input-type ete \
--barplot-layout genome_size protein_count \
--heatmap-layout gc_percentage \
---binary-layout aquatic_habitat host_associated soil_habitat \
--rectangle-layout ncbi_assembly_level ncbi_genome_category \
--taxonclade-layout \
--column-width 70
Here we show the GTDB v202 taxonomy tree (bacteria+archaea, 47894 leaves) in rectangular tree layout, with selected annotated properties which are displayed by order in aligned panel. Numerical data genome_size
and protein_count
are visualized as barplot, gc_percentage
is shown as heatmap. Habitat information of progenome3, aquatic_habitat
, host_associated
and soil_habitat
are shown as binary layout. Two categorical data ncbi_assembly_level
and ncbi_genome_category
are visualized as rectangular layout. In order to improve memory effiency, tree has default collapse level (10) hence multiple leaf nodes are collapsed as default, if nodes are collapsed, aligned layouts represented corresponding values of each property of annotated internal nodes. In this level, taxonclade-layout
of the highest classification kingdom
is activated, which demonstrate bacteria
in salmon, archaea
in blue.
Once zoom into smaller view in tree, collapse level reduces automatically (or manually) to 1, then leaf nodes are dynamically displayed and rendered. Therefore associated layouts are shown as represending values of annotated leaves. taxonclade-layout
colored leaf nodes in specie
rank level.
Annotated tree and layouts can be shown as circular tree layout.
Demo2 Explore large NifH gene tree with functional and taxonomic information
Here we analyzed the nitrogenase iron protein NifH gene family across bacteria from EggNOG6 with EggNOG-mapper, a tool for functional annotation based on precomputed orthology assignments. TreeProfiler provides options which allows users to directly map EggNOG-mapper outputs including functional annotations and pfam/smart domain predictions. Hence are then able to map these functional annotations to their respective phylogenetic gene trees and them with the evolutionary history, tracing from leaf to root level.
Map emapper annotation, pfam annotation and taxonomic annotation to target tree
treeprofiler annotate \
--tree examples/pratical_example/emapper/nifH.tree \
--emapper_annotation examples/pratical_example/emapper/nifH.out.emapper.annotations \
--emapper-pfam examples/pratical_example/emapper/nifH.out.emapper.pfam \
--alignment examples/pratical_example/emapper/nifH.faa.aln \
--taxonomic-profile \
--taxadb NCBI \
--taxon-delimiter . \
--taxa-field 0 \
-o examples/pratical_example/emapper/
Visualize annotations of emapper, pfam domain and ncbi taxonomy
treeprofiler plot \
--tree examples/pratical_example/emapper/nifH_annotated.ete \
--input-type ete \
--emapper-layout \
--domain-layout \
--taxonclade-layout \
--column-width 70
visualization of categorical data seed_orthologs
, max_annot_lvl
, COG_category
, Description
, Preferred_name
, and numerical data score
visualization of KEGG_Pathway
profiling
visualization of KEGG_ko
profiling
visualization of domain
annotation
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file TreeProfiler-1.2.0.tar.gz
.
File metadata
- Download URL: TreeProfiler-1.2.0.tar.gz
- Upload date:
- Size: 15.0 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fbe0d5ef92227825cf9d3705acea74d63a11e2eb149eb3fd5aff0d4fa5bab75c |
|
MD5 | ce9fa951ad41f14cb346f41421765af5 |
|
BLAKE2b-256 | a2950629dc43f44f6f16452a71ca00cf03c9ee8c1ee93232c24efb721319fb10 |
File details
Details for the file TreeProfiler-1.2.0-py3-none-any.whl
.
File metadata
- Download URL: TreeProfiler-1.2.0-py3-none-any.whl
- Upload date:
- Size: 15.1 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ea799c767a43423109c692b5db4aabee61409d88cbce63404ef3de7238793ab0 |
|
MD5 | 8f870fd4d9cad4fc8f5720887ac9a9ed |
|
BLAKE2b-256 | 78e1ec9c56414336e109e2d707183febb18993d6afabfce9f9967de0ca488db0 |