Skip to main content

Python module for calculating Timber data from tree species of the west coast

Project description

treetopper

Python module for calculating Stand data using tree species of the west coast.

DOCUMENTATION https://zacharybeebe.github.io/treetopper/

pip install treetopper

If you would like to download a blank, formatted inventory sheet in .csv or .xlsx...

In the terminal:

    python -m treetopper.blank_sheet

And follow the prompts

To go through example workflows with treetopper, this can be done in with the stand module.

There are 6 different workflows that show examples of how treetopper works, these workflows will show console reports, create csv/xlsx files of stand plot data, create pdf reports, and/or create FVS-formatted databases

The workflow number 1 through 6 is the only argument when calling the stand module.

In the terminal:

    python -m treetopper.stand [workflow_number]

The summary of the workflow and the outputs will print at the bottom of the terminal

The species available for calculation are below and must have the correct species code...

    'DF': 'DOUGLAS-FIR'
    'WH': 'WESTERN HEMLOCK'
    'RC': 'WESTERN REDCEDAR'
    'SS': 'SITKA SPRUCE'
    'ES': 'ENGLEMANN SPRUCE'
    'SF': 'SILVER FIR'
    'GF': 'GRAND FIR'
    'NF': 'NOBLE FIR'
    'WL': 'WESTERN LARCH'
    'WP': 'WHITE PINE'
    'PP': 'PONDEROSA PINE'
    'LP': 'LODGEPOLE PINE'
    'JP': 'JEFFERY PINE'
    'SP': 'SUGAR PINE'
    'WF': 'WHITE FIR'
    'RF': 'RED FIR'
    'RW': 'COASTAL REDWOOD'
    'IC': 'INSENCE CEDAR'
    'RA': 'RED ALDER'
    'BM': 'BIGLEAF MAPLE'
    'CW': 'BLACK COTTONWOOD'
    'AS': 'QUAKING ASPEN'

An example of how to get started is...

from treetopper import *

"""
This workflow will create a quick cruise stand from manually entered plot/tree data
and then will display a console report, create a pdf report and create a csv file
of the stand's plot data in the current working directory.

Using the ThinTPA class, we will run a thinning scenario on the stand to a target density
of 80 Trees per Acre considering all species and diameter ranges. Then it will display a
console report of the thinning and create a pdf report.

Finally we will use the FVS class to create a SQLite database that is formatted for use
in FVS. FVS is the US Forest Service's "Forest Vegetation Simulator" software.
"""

## Instantiating the Stand class
stand = Stand('WF1', -20)
# Stand(Stand Name, Plot Factor, [optional] Acres, Inventory Date)

plot_factor = stand.plot_factor

## Entering Tree Data for a Quick Cruise, using the TimberQuick class
tree_data = [[TimberQuick('DF', 29.5, 119, plot_factor), TimberQuick('WH', 18.9, 102, plot_factor),
              TimberQuick('WH', 20.2, 101, plot_factor), TimberQuick('WH', 19.9, 100, plot_factor),
              TimberQuick('DF', 20.6, 112, plot_factor)],
             [TimberQuick('DF', 25.0, 117, plot_factor), TimberQuick('DF', 14.3, 105, plot_factor),
              TimberQuick('DF', 20.4, 119, plot_factor), TimberQuick('DF', 16.0, 108, plot_factor),
              TimberQuick('RC', 20.2, 124, plot_factor), TimberQuick('RC', 19.5, 116, plot_factor),
              TimberQuick('RC', 23.4, 121, plot_factor), TimberQuick('DF', 17.8, 116, plot_factor),
              TimberQuick('DF', 22.3, 125, plot_factor)]
             ]
#TimberQuick(Species Code, DBH, Total Height, Plot Factor, [optional] Preferred Log Length, Minimum Log Length)

## Adding Tree data to Plot class and adding the Plot class to the Stand class
for trees in tree_data:
    plot = Plot()
    for tree in trees:
        plot.add_tree(tree)
    stand.add_plot(plot)

## Generating Stand class data reports
print(stand.console_report())
stand.pdf_report('example_stand_report')
# stand.pdf_report(Filename, [optional] Directory)
stand.table_to_csv('example_csv_export.csv')
# stand.table_to_csv(Filename, [optional] Directory)


## Running a thinning scenario on the Stand class, using the ThinTPA class
thin80tpa = ThinTPA(stand, 80)
# ThinTPA(Stand Class, Target Density, [optional] Species to Cut (list), Minimum DBH to Cut, Maximum DBH to Cut)


## Generating Thin class report
print(thin80tpa.console_report())
thin80tpa.pdf_report('example_thin_report')
# thin80tpa.pdf_report(Filename, [optional] Directory)


## Creating a FVS-formatted database from the Stand class data
fvs = FVS()
fvs.set_stand(stand, 'PN', 612, 6, 45, 'DF', 110)
# fvs.set_stand(Stand Class, Variant, Forest Number, Region Number, Stand Age, Site Class Species, Site Index, **kwargs)
fvs.sqlite_db('sqlite_db')
# fvs.sqlite_db(Filename, [optional] Directory, Blank Database (bool))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

treetopper-1.1.6.tar.gz (2.8 MB view details)

Uploaded Source

File details

Details for the file treetopper-1.1.6.tar.gz.

File metadata

  • Download URL: treetopper-1.1.6.tar.gz
  • Upload date:
  • Size: 2.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.7.8

File hashes

Hashes for treetopper-1.1.6.tar.gz
Algorithm Hash digest
SHA256 c91e72de93ca02caa8a27b9a8568e8128b7f8bf0e958ba849ae59e2b8e6ae1e2
MD5 8049db91deda858aff5c781c39c1218c
BLAKE2b-256 08a90fcc6d10dec599ffead05b3bdbdc7bee303a0428d10db64b6fbf1ba98715

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page