Package for handling tr-EPR data.
Project description
trepr is a package for handling data obtained using time-resolved electron paramagnetic resonance (TREPR) spectroscopy. It is based on the ASpecD framework. Due to inheriting from the ASpecD superclasses, all data generated with the trepr package are completely reproducible and have a complete history.
What is even better: Actual data processing and analysis no longer requires programming skills, but is as simple as writing a text file summarising all the steps you want to have been performed on your dataset(s) in an organised way. Curious? Have a look at the following example:
format: type: ASpecD recipe version: '0.2' settings: default_package: trepr datasets: - /path/to/first/dataset - /path/to/second/dataset tasks: - kind: processing type: PretriggerOffsetCompensation - kind: processing type: BackgroundCorrection properties: parameters: num_profiles: [10, 10] - kind: singleplot type: SinglePlotter2D properties: filename: - first-dataset.pdf - second-dataset.pdf
For more general information on the trepr package and for how to use it, see its documentation.
Features
A list of features:
Fully reproducible processing of tr-EPR data
Import and export of data from and to different formats
Customisable plots
Automatically generated reports
Recipe-driven data analysis, allowing tasks to be performed fully unattended in the background and without programming skills
And to make it even more convenient for users and future-proof:
Open source project written in Python (>= 3.5)
Extensive user and API documentation
Target audience
The trepr package addresses scientists working with TREPR data (both, measured and calculated) on a daily base and concerned with reproducibility. Due to being based on the ASpecD framework, the trepr package ensures reproducibility and—as much as possible—replicability of data processing, starting from recording data and ending with their final (graphical) representation, e.g., in a peer-reviewed publication. This is achieved by automatically creating a gap-less record of each operation performed on your data. If you do care about reproducibility and are looking for a system that helps you to achieve this goal, the trepr package may well be interesting for you.
Installation
Install the package by running:
pip install trepr
License
This program is free software: you can redistribute it and/or modify it under the terms of the BSD License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file trepr-0.2.0.tar.gz
.
File metadata
- Download URL: trepr-0.2.0.tar.gz
- Upload date:
- Size: 47.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 886196eb0a6113e9ea300763a2269b0898a3921a42e514d2914dd04bf024f84a |
|
MD5 | 8bb2204433f16fbc7c4d462a9d8809e3 |
|
BLAKE2b-256 | 9a418099ccec9f664cd855010fe25d329dc3b0cb513ef91cde9094bb09eac926 |
File details
Details for the file trepr-0.2.0-py3-none-any.whl
.
File metadata
- Download URL: trepr-0.2.0-py3-none-any.whl
- Upload date:
- Size: 50.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 44699ffe2f930ac33ca7012f0351df908c7b16b09fa8ac15da263903d3f94750 |
|
MD5 | f92e585ee7f975dd437956824cd210cf |
|
BLAKE2b-256 | f800c0208ae17c461989f25722de6542a9ff03cbff95b4724a3a90a1ff2aaf68 |