Skip to main content

Make pytorch and tensorflow two become one.

Project description

trident Make PyTorch and TensorFlow two become one.

version pytorch tensorflow
version pytorch tensorflow

Trident is a deep learning dynamic calculation graph api based on PyTorch and TensorFlow (pure Eager mode, no Keras dependency). Through Trident, not only you can use the same develope experient (more than 99% of the same code) within PyTorch and Tensorflow, it is designed for simplify deep learning developers routine work,it's functions not only cover computing vision, natural language understanding and reinforcement learning, but also including more simpler network structure declaration, more powerful but easier training process control, intuitive data access and data augmentation.

Trident 是基於PyTorch和TensorFlow的深度學習動態計算圖API(純Eager模式,無Keras依賴)。 通過Trident,您不僅可以在PyTorch和Tensorflow中使用相同的開發經驗(超過99%的相同代碼),它的誕生的目的就是希望簡化深度學習開發人員的日常工作,Trident的功能不但覆蓋機器視覺、自然語言與強化學習。它的功能還包括更簡單的網絡結構聲明,更強大但更容易的培訓 過程控制,直觀的數據訪問和數據增強。

Key Features

  • Integrated Pytorch and Tensorflow experience (from ops operation, neural network structure announcement, loss function and evaluation function call...)

  • Able to automatically transpose the tensor direction according to the background type (PyTorch (CHW) or Tensorflow (HWC))

  • Only one original neural block is used to meet more needs. For example, Conv2d_Block integrates five functions including convolutional layer, normalization, activation function, dropout, and noise.

  • The amount of padding can be automatically calculated through Autopad during neural layer design. Even PyTorch can delay shape inference, and use Summary to view model structure and computing power consumption information.

  • Rich built-in visualization, evaluation function and internal information can be inserted into the training plan.

  • Training Plan can be flexible like building blocks stacked to design the training process you want, while using fluent style syntax to make the overall code easier to read and easier to manage.

  • Provide the latest optimizers (Ranger, Lars, RangerLars, AdaBelief...) and optimization techniques (gradient centralization).

  • 整合一致的Pytorch與Tensorflow體驗(從ops操作、神經網路結構宣告、損失函數與評估函數調用....)

  • 能夠根據後台種類(PyTorch (CHW) 或是 Tensorflow (HWC))自動進行張量方向轉置

  • 僅用一個神經區塊原件來滿足更多的需求,例如Conv2d_Block整合了卷積層、正規化、活化函數、Dropout、噪音等五種功能。

  • 神經層設計時可以透過Autopad 自動計算padding量,就連PyTorch也可以延遲˙形狀推斷,以及使用Summary檢視模型結構與算力耗用信息。

  • 豐富的內建視覺化、評估函數以及內部訊息,可供插入至訓練計畫中。

  • 訓練計畫(Training Plan) 可以如同堆積木般彈性設計你想要的訓練流程,同時使用fluent style語法讓整體代碼易讀更容易管理。

  • 提供最新的優化器( Ranger,Lars, RangerLars, AdaBelief...)以及優化技巧(gradient centralization)。

New Release version 0.7.1

Alt text

  • New Vision Transform.

New Release version 0.7.0

Alt text

  • Tensorboard support.
  • New optimizer: AdaBelief, DiffGrad
  • Initializers support.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tridentx  --upgrade

Step 1: Add these imports

import os
os.environ['TRIDENT_BACKEND'] = 'pytorch'
import trident as T
from trident import *
from trident.models.pytorch_densenet import DenseNetFcn

Step 2: A simple case both in PyTorch and Tensorflow

data_provider=load_examples_data('dogs-vs-cats')
data_provider.image_transform_funcs=[
    random_rescale_crop(224,224,scale=(0.9,1.1)),
    random_adjust_gamma(gamma=(0.9,1.1)),
    normalize(0,255),
    normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])]

model=resnet.ResNet50(include_top=True,pretrained=True,freeze_features=True,classes=2)\
    .with_optimizer(optimizer=Ranger,lr=1e-3,betas=(0.9, 0.999),gradient_centralization='all')\
    .with_loss(CrossEntropyLoss)\
    .with_metric(accuracy,name='accuracy')\
    .unfreeze_model_scheduling(200,'batch',5,None) \
    .unfreeze_model_scheduling(1, 'epoch', 4, None) \
    .summary()

plan=TrainingPlan()\
    .add_training_item(model)\
    .with_data_loader(data_provider)\
    .repeat_epochs(10)\
    .within_minibatch_size(32)\
    .print_progress_scheduling(10,unit='batch')\
    .display_loss_metric_curve_scheduling(200,'batch')\
    .print_gradients_scheduling(200,'batch')\
    .start_now()

Step 3: Examples

BibTeX

If you want to cite the framework feel free to use this:

@article{AllanYiin2020Trident,
  title={Trident},
  author={AllanYiin, Taiwan},
  journal={GitHub. Note: https://github.com/AllanYiin/trident},
  volume={1},
  year={2020}
}

Project details


Release history Release notifications | RSS feed

This version

0.7.2

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tridentx-0.7.2.tar.gz (4.8 MB view hashes)

Uploaded Source

Built Distribution

tridentx-0.7.2-py3-none-any.whl (694.2 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page