Skip to main content

Bayesian predictive classification and structure learning in decomposable graphical models using particle Gibbs.

Project description

GitHub PyPI Libraries.io dependency status for latest release

Bayesian inference in decomposable graphical models using sequential Monte Carlo methods

This library contains Bayesian inference in decomposable (triangulated) graphical models based on sequential Monte Carlo methods. Currently supported functionalities include:

  • Bayesian structure learning for discrete log-linear and Gaussian data.

  • Estimation of the number of decomopsable graphs with a given number of nodes.

  • Predictive classification using Bayesian model averaging (BMA).

  • Random generation of junction trees (the Christmas tree algorithm).

Installation

If graphviz is not installed, you can install it from brew / aptitude / pacman for example

$ brew install graphviz

On Ubuntu you might need to run

sudo apt-get install python-dev graphviz libgraphviz-dev pkg-config

Then run

$ pip install trilearn

It is also possible to pull trilearn as a docker image by

$ docker pull onceltuca/trilearn

Running the tests

$ make test

Usage

See the Jupyter notebooks for examples of usage.

Scripts

Continuous data

To approximate the underlying decomposable graph posterior given the dataset sample_data/data_ar1-5.csv run

$ pgibbs_ggm_sample -N 50 -M 1000 -f sample_data/data_ar1-5.csv -o results_ggm

this will produce a file containing the Markov chain generated by the particle Gibbs algorithm. In order to analyze the chain run

$ analyze_graph_tajectories -i results_ggm -o results_ggm/plots

this will produce a bunch of files in the current directory to be analyzed.

Discrete data

The data set examples/data/czech_autoworkers.csv contains six binary variables. To generate a particle Gibbs trajectory of decomposable graphs type

$ pgibbs_loglinear_sample -N 50 -M 300 -f sample_data/czech_autoworkers.csv  -o results_loglin

and

$ analyze_graph_tajectories -i results_loglin -o results_loglin/plots

this will produce a number of files in the current directory.

Estimate the number of decomposable graphs

To estimate the number of decomposable graphs with up to 15 nodes run for example

$ count_chordal_graphs -p 15 -N 20000

Built With

Authors

  • Felix L. Rios just send me an e-mail in case of any questions, felix.leopoldo.rios at gmail com

References

License

This project is licensed under the Apache 2.0 License - see the LICENSE file for details

Acknowledgments

  • Jim Holmstrom

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

trilearn-2.0.5-py3-none-any.whl (78.8 kB view details)

Uploaded Python 3

File details

Details for the file trilearn-2.0.5-py3-none-any.whl.

File metadata

  • Download URL: trilearn-2.0.5-py3-none-any.whl
  • Upload date:
  • Size: 78.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.3

File hashes

Hashes for trilearn-2.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 cb89445eb538fa8ddee5196e6468a4b5bd7569819170c2cf432b8681250fe213
MD5 d807e5850c52bc3a8a2621aab956795d
BLAKE2b-256 fb3b29f4bf21821b0bc74a56856a1193e5201ef4ddb9e4602fcc09c56ed00dee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page