Skip to main content

Bayesian predictive classification and structure learning in decomposable graphical models using particle Gibbs.

Project description

GitHub PyPI dependency status for latest release

Bayesian inference in decomposable graphical models using sequential Monte Carlo methods

This library contains Bayesian inference in decomposable (triangulated) graphical models based on sequential Monte Carlo methods. Currently supported functionalities include:

  • Bayesian structure learning for discrete log-linear and Gaussian data.

  • Estimation of the number of decomopsable graphs with a given number of nodes.

  • Predictive classification using Bayesian model averaging (BMA).

  • Random generation of junction trees (the Christmas tree algorithm).


This package currently requires Python 2.7. If graphviz is not installed, you can install it from brew / aptitude / pacman for example

$ brew install graphviz

On Ubuntu you might need to run

sudo apt-get install python-dev graphviz libgraphviz-dev pkg-config

Then run

$ pip install trilearn

It is also possible to pull trilearn as a docker image by

$ docker pull onceltuca/trilearn

Running the tests

$ make test


See the Jupyter notebooks for examples of usage.


Continuous data

To approximate the underlying decomposable graph posterior given the dataset sample_data/data_ar1-5.csv run

$ pgibbs_ggm_sample -N 50 -M 1000 -f sample_data/data_ar1-5.csv -o results_ggm

this will produce a file containing the Markov chain generated by the particle Gibbs algorithm. In order to analyze the chain run

$ analyze_graph_tajectories -i results_ggm -o results_ggm/plots

this will produce a bunch of files in the current directory to be analyzed.

Discrete data

The data set examples/data/czech_autoworkers.csv contains six binary variables. To generate a particle Gibbs trajectory of decomposable graphs type

$ pgibbs_loglinear_sample -N 50 -M 300 -f sample_data/czech_autoworkers.csv  -o results_loglin


$ analyze_graph_tajectories -i results_loglin -o results_loglin/plots

this will produce a number of files in the current directory.

Estimate the number of decomposable graphs

To estimate the number of decomposable graphs with up to 15 nodes run for example

$ count_chordal_graphs -p 15 -N 20000

Built With


  • Felix L. Rios just send me an e-mail in case of any questions, felix.leopoldo.rios at gmail com



This project is licensed under the Apache 2.0 License - see the LICENSE file for details


  • Jim Holmstrom

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release. See tutorial on generating distribution archives.

Built Distribution

trilearn-2.0.2-py3-none-any.whl (78.7 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page