Explaining models, with Triples.
Project description
TripleX
Explaining models, with triples
Triplex is a local explainability method to explain transformer models by creating small knowledge graphs in the form of triplets.
This implementation focuses on explaining predictions on NLI (natural language inference) tasks.
Explanations are provided as dfas.DFAH
(Deterministic Finite state Automata of Hypernyms).
import pathlib
import copy
import json
from dfas import DFAH
# base path
BASE_PATH = str(pathlib.Path().absolute()) + '/'
# Load a sample DFAH
dfah = DFAH.from_json(BASE_PATH + 'data/dummies/dfah.json')
# Show a DFAH visually
print(dfah)
# access the perturbations it went through
perturbations = dfah.perturbations
# dfah are copy-able and serializable
copy_dfah = copy.copy(dfah)
with open('data/dummies/my_dfah.json') as log:
json.dump(dfah.to_json(), log)
Getting started
Install dependencies:
pip install triplex
python -m remote.py download en_core_web_sm
Run
from transformers import AutoModel
import logzero
from triplex.triplex import TripleX
# logging level, set to logging.DEBUG for verbose output
logzero.loglevel(logzero.logging.INFO)
model = 'microsoft/deberta-base'
model = AutoModel.from_pretrained(model, output_attentions=True)
# create explainer
explainer = TripleX(model)
premise = 'Dana Reeve, the widow of the actor Christopher Reeve, has died of lung cancer at age 44, according to the Christopher Reeve Foundation.'
hypothesis = 'Christopher Reeve had an accident.'
dfas, counterfactual_dfas = explainer.extract(premise, hypothesis,
depth=2,
max_perturbations_per_token=3)
print('--- Explanations')
for d in dfas[:3]:
print(str(d))
for d in counterfactual_dfas[:3]:
print(str(d))
To run on a local JSONL dataset:
from transformers import AutoModel
import pandas as pd
from scripts.extract_from_dataset import to_standard_labels
from triplex.triplex import TripleX
dataset = 'path/to/dataset.jsonl'
data = pd.read_json(dataset, lines=True)
data = data.drop('idx', axis='columns')
data['label'] = to_standard_labels(data['label'].values, dataset)
data = data[['premise', 'hypothesis', 'label']]
model = AutoModel.from_pretrained('microsoft/deberta-base', output_attentions=True)
explainer = TripleX(model)
explanations = list()
for idx, row in data.iterrows():
premise, hypothesis, label = row.premise, row.hypothesis, row.label
dfas, counterfactual_dfas = explainer.extract(premise, hypothesis,
depth=2,
max_perturbations_per_token=3)
explanations.append((premise, hypothesis, label, dfas, counterfactual_dfas))
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
triplex-0.0.18.tar.gz
(38.7 kB
view details)
Built Distribution
triplex-0.0.18-py3-none-any.whl
(40.2 kB
view details)
File details
Details for the file triplex-0.0.18.tar.gz
.
File metadata
- Download URL: triplex-0.0.18.tar.gz
- Upload date:
- Size: 38.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 142d77c5f637f56665ec28d8d47ac8cba62320bf9a45054403a0e1f397ce88f9 |
|
MD5 | a29539ae2009f9927ea211e4f2d49c3a |
|
BLAKE2b-256 | ca105b841e8c01bfb3d78cba067d49d05b94351641eeb7e9a2337a75cc493af2 |
File details
Details for the file triplex-0.0.18-py3-none-any.whl
.
File metadata
- Download URL: triplex-0.0.18-py3-none-any.whl
- Upload date:
- Size: 40.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c508e2408befd7d3488aeb983ccaffb035c5a7538feb6d3f47fe594098e41315 |
|
MD5 | c73b916beff798a829ea41ed90e1fc9c |
|
BLAKE2b-256 | 04a67514d02911e817f5de96f9b544c932462d80a775e989a4ef8a65e8a7fa67 |