Skip to main content

Explaining models, with Triples.

Project description

TripleX

Explaining models, with triples

Triplex is a local explainability method to explain transformer models by creating small knowledge graphs in the form of triplets. This implementation focuses on explaining predictions on NLI (natural language inference) tasks. Explanations are provided as dfas.DFAH (Deterministic Finite state Automata of Hypernyms).

import pathlib
import copy
import json

from dfas import DFAH

# base path
BASE_PATH = str(pathlib.Path().absolute()) + '/'
# Load a sample DFAH
dfah = DFAH.from_json(BASE_PATH + 'data/dummies/dfah.json')
# Show a DFAH visually
print(dfah)
# access the perturbations it went through
perturbations = dfah.perturbations

# dfah are copy-able and serializable
copy_dfah = copy.copy(dfah)
with open('data/dummies/my_dfah.json') as log:
    json.dump(dfah.to_json(), log)

Getting started

Install dependencies:

pip install triplex

python -m spacy download en_core_web_sm

Run

from transformers import AutoModel
import logzero

from triplex.triplex import TripleX

# logging level, set to logging.DEBUG for verbose output
logzero.loglevel(logzero.logging.INFO)

model = 'microsoft/deberta-base'
model = AutoModel.from_pretrained(model, output_attentions=True)
# create explainer
explainer = TripleX(model)

premise = 'Dana Reeve, the widow of the actor Christopher Reeve, has died of lung cancer at age 44, according to the Christopher Reeve Foundation.'
hypothesis = 'Christopher Reeve had an accident.'
dfas, counterfactual_dfas = explainer.extract(premise, hypothesis,
                                              depth=2,
                                              max_perturbations_per_token=3)
print('--- Explanations')
for d in dfas[:3]:
    print(str(d))
for d in counterfactual_dfas[:3]:
    print(str(d))

To run on a local JSONL dataset:

from transformers import AutoModel
import pandas as pd

from scripts.extract_from_dataset import to_standard_labels
from triplex.triplex import TripleX

dataset = 'path/to/dataset.jsonl'
data = pd.read_json(dataset, lines=True)
data = data.drop('idx', axis='columns')
data['label'] = to_standard_labels(data['label'].values, dataset)
data = data[['premise', 'hypothesis', 'label']]

model = AutoModel.from_pretrained('microsoft/deberta-base', output_attentions=True)
explainer = TripleX(model)
explanations = list()
for idx, row in data.iterrows():
    premise, hypothesis, label = row.premise, row.hypothesis, row.label
    dfas, counterfactual_dfas = explainer.extract(premise, hypothesis,
                                                  depth=2,
                                                  max_perturbations_per_token=3)
    explanations.append((premise, hypothesis, label, dfas, counterfactual_dfas))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

triplex-0.0.14.tar.gz (29.7 kB view hashes)

Uploaded Source

Built Distribution

triplex-0.0.14-py3-none-any.whl (34.7 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page