Skip to main content

project descriptions here

Project description

tritonv2

A client library for promote triton official client

Installation

pip install tritonv2==1.3.5.1

Usage

First, you need to create a client object.

from tritonv2.client_factory import TritonClientFactory
server_url = "localhost:8000"

http_client = TritonClientFactory.create_grpc_client(server_url)
or
async with TritonClientFactory.create_http_aio_client(server_url) as http_aio_client
or 
grpc_client = TritonClientFactory.create_grpc_client(server_url)
or
async with TritonClientFactory.create_grpc_aio_client(server_url) as grpc_aio_client

In addition, you can set retry for grpc client:

client = TritonClientFactory.create_grpc_client(server_url, num_retries=3,max_interval_secs=20,base_interval_secs=0.3)

for http client we have default setting:

NUMBER_RETRIES = 3
MAX_INTERVAL_SECS = 20
BASE_INTERVAL_SECS = 0.3

Now you can easy use the client to send requests to the server.

for server:

client.server_live()
client.server_ready()
client.server_metadata()

for model:

client.model_metadata(model_name)
client.model_config(model_name)
client.model_ready(model_name)
client.model_statistics(model_name)

for infer:

client.model_infer(model_name, inputs, model_version, outputs)
client.stream_infer(inputs_iterator)

for repository:

client.repository_index()
client.repository_model_load(model_name)
client.repository_model_unload(model_name)

for system shared memory:

client.system_shared_memory_status()
client.system_shared_memory_register()
client.system_shared_memory_unregister()

for cuda shared memory:

client.cuda_shared_memory_status()
client.cuda_shared_memory_register()
client.cuda_shared_memory_unregister()

for trace setting:

client.trace_setting()
client.get_trace_settings()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tritonv2-1.3.5.1.tar.gz (59.1 kB view details)

Uploaded Source

Built Distribution

tritonv2-1.3.5.1-py3-none-any.whl (82.3 kB view details)

Uploaded Python 3

File details

Details for the file tritonv2-1.3.5.1.tar.gz.

File metadata

  • Download URL: tritonv2-1.3.5.1.tar.gz
  • Upload date:
  • Size: 59.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for tritonv2-1.3.5.1.tar.gz
Algorithm Hash digest
SHA256 c4d989816afa6c810adf67afb3b00e57df452c331225b693afa743862bafe8bf
MD5 f82a5389e3b6f95f0a8567ffc5b281a1
BLAKE2b-256 f6839fb268caf11a493d4187f738b32d91a30c42b6947a2f3dcfe11af83742ab

See more details on using hashes here.

File details

Details for the file tritonv2-1.3.5.1-py3-none-any.whl.

File metadata

  • Download URL: tritonv2-1.3.5.1-py3-none-any.whl
  • Upload date:
  • Size: 82.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for tritonv2-1.3.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 88f1bf7115f76a373afbb43fa398341e32a799e1c7853cc92e269ad80e5ec579
MD5 e05c6d57ee64fad9de6f2e87fab9490b
BLAKE2b-256 6a1e9297a421b9a74effe719ee07eeaebe51a823f15cb1e4d5eef941b3f703cc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page