Skip to main content

Tiny configuration for Triton Inference Server

Project description

tritony - Tiny configuration for Triton Inference Server

CI

Key Features

  • Simple configuration. Only $host:$port and $model_name are required.
  • Generating asynchronous requests with asyncio.Queue

Requirements

$ pip install tritonclient[all]

Install

$ pip install tritony

Test

With Triton

docker run --rm \
    -v ${PWD}:/models \
    nvcr.io/nvidia/tritonserver:22.01-pyt-python-py3 \
    tritonserver --model-repo=/models
pytest -m -s tests/test_tritony.py

Example with image_client.py

# Download Images from https://github.com/triton-inference-server/server.git
python ./example/image_client.py --image_folder "./server/qa/images"

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tritony-0.0.8.tar.gz (8.6 kB view hashes)

Uploaded source

Built Distribution

tritony-0.0.8-py2.py3-none-any.whl (9.4 kB view hashes)

Uploaded py2 py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page