Skip to main content

Tiny configuration for Triton Inference Server

Project description

tritony - Tiny configuration for Triton Inference Server

Pypi CI Coverage Status

What is this?

If you see the official example, it is really confusing to use where to start.

Use tritony! You will get really short lines of code like example below.

import argparse
import os
from glob import glob
import numpy as np
from PIL import Image

from tritony import InferenceClient


def preprocess(img, dtype=np.float32, h=224, w=224, scaling="INCEPTION"):
    sample_img = img.convert("RGB")

    resized_img = sample_img.resize((w, h), Image.Resampling.BILINEAR)
    resized = np.array(resized_img)
    if resized.ndim == 2:
        resized = resized[:, :, np.newaxis]

    scaled = (resized / 127.5) - 1
    ordered = np.transpose(scaled, (2, 0, 1))
    
    return ordered.astype(dtype)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--image_folder", type=str, help="Input folder.")
    FLAGS = parser.parse_args()

    client = InferenceClient.create_with("densenet_onnx", "0.0.0.0:8001", input_dims=3, protocol="grpc")
    client.output_kwargs = {"class_count": 1}

    image_data = []
    for filename in glob(os.path.join(FLAGS.image_folder, "*")):
        image_data.append(preprocess(Image.open(filename)))

    result = client(np.asarray(image_data))

    for output in result:
        max_value, arg_max, class_name = output[0].decode("utf-8").split(":")
        print(f"{max_value} ({arg_max}) = {class_name}")

Release Notes

  • 23.08.30 Support optional with model input, parameters on config.pbtxt
  • 23.06.16 Support tritonclient>=2.34.0
  • Loosely modified the requirements related to tritonclient

Key Features

  • Simple configuration. Only $host:$port and $model_name are required.
  • Generating asynchronous requests with asyncio.Queue
  • Simple Model switching
  • Support async tritonclient

Requirements

$ pip install tritonclient[all]

Install

$ pip install tritony

Test

With Triton

./bin/run_triton_tritony_sample.sh
pytest -s --cov-report term-missing --cov=tritony tests/

Example with image_client.py

# Download Images from https://github.com/triton-inference-server/server.git
python ./example/image_client.py --image_folder "./server/qa/images"

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tritony-0.0.14.tar.gz (12.2 kB view details)

Uploaded Source

Built Distribution

tritony-0.0.14-py3-none-any.whl (10.0 kB view details)

Uploaded Python 3

File details

Details for the file tritony-0.0.14.tar.gz.

File metadata

  • Download URL: tritony-0.0.14.tar.gz
  • Upload date:
  • Size: 12.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for tritony-0.0.14.tar.gz
Algorithm Hash digest
SHA256 0f497a8dd74b6517eaeba83e917128c784c4d861a9869e8d6b1f691084fcbd89
MD5 2b17c765cb26efac0525405eb41c52b5
BLAKE2b-256 d547740de8f856ec8948c6b5833d216f3a5c65dbaa7b64df8ea961b42237c38b

See more details on using hashes here.

File details

Details for the file tritony-0.0.14-py3-none-any.whl.

File metadata

  • Download URL: tritony-0.0.14-py3-none-any.whl
  • Upload date:
  • Size: 10.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for tritony-0.0.14-py3-none-any.whl
Algorithm Hash digest
SHA256 dd53ddd18c7a342e11bfecc9ef4b1fa68cc176d4b9a03ce09c7334a2887f20a7
MD5 9e87c04ff8c04c3a683db620b6602778
BLAKE2b-256 61976374f2dd387a3e9b8e6341d1496868c9ee7873a59a7d1ca3c12b27197e76

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page