Skip to main content

Decorators for reducing pytorch boilerplate

Project description

What is this?

Functions and decorators I found myself rewriting for every pytorch project

How do I use this?

pip install trivial-torch-tools

from trivial_torch_tools import Sequential, init
import torch.nn as nn


class Model(nn.Module):
    @init.to_device()
    # ^ does self.to() and defaults to GPU if available (uses default_device variable)
    @init.save_and_load_methods(model_attributes=["layers"], basic_attributes=["input_shape"])
    # ^ creates self.save(path=self.path) and self.load(path=self.path)
    def __init__(self):
        self.input_shape = (81,81,3)
        layers = Sequential(input_shape=self.input_shape)
        # ^ dynamically compute the output shape/size of layers (the nn.Linear below)
        layers.add_module('conv1'   , nn.Conv2d(input_shape[0], 32, kernel_size=8, stride=4, padding=0))
        layers.add_module('relu1'   , nn.ReLU())
        layers.add_module('flatten' , nn.Flatten(start_dim=1, end_dim=-1))
        layers.add_module('linear1' , nn.Linear(in_features=layers.output_size, out_features=10)) 
        layers.add_module('sigmoid1', nn.Sigmoid())
        self.layers = layers

        # layers.output_size
        # layers.output_shape
        # layers.layer_shapes

# available tools
from trivial_torch_tools import *

core.default_device # defaults to cuda if available
core.to_tensor(nested_lists_of_arrays_tuples_and_more) # aggresively converts objects to tensors

# decorators for def __init__()
@model.init.to_device(device=default_device)
@model.init.save_and_load_methods(basic_attributes=[], model_attributes=[], path_attribute="path")
@model.init.forward_sequential_method
# decorators for def forward(): # or whatever 
@model.convert_each_arg.to_tensor() # Use to_tensor(which_args=[0]) to only convert first arg
@model.convert_each_arg.to_device() # Use to_device(which_args=[0]) to only convert first arg
@model.convert_each_arg.to_batched_tensor(number_of_dimensions=4) # 4 works for color images
@model.convert_each_arg.torch_tensor_from_opencv_format()

image.tensor_from_path(path)
image.pil_image_from_tensor(tensor)
image.torch_tensor_from_opencv_format(tensor_or_array)
image.opencv_tensor_from_torch_format(tensor)
image.opencv_array_from_pil_image(image_obj)

OneHotifier.tensor_from_argmax(tensor)             # [0.1,99,0,0,] => [0,1,0,0,]
OneHotifier.index_from_one_hot(tensor)             # [0,1,0,0,] => 2
OneHotifier.index_tensor_from_onehot_batch(tensor) # [[0,1,0,0,]] => [2]

import torch
converter = OneHotifier(possible_values=[ "thing0", ('thing', 1), {"thing":2} ])
converter.to_one_hot({"thing":2}) # >>> tensor([0,0,1])
converter.from_one_hot(torch.tensor([0,0,1])) # >>> {"thing":2}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

trivial_torch_tools-0.1.0.tar.gz (9.7 kB view details)

Uploaded Source

Built Distribution

trivial_torch_tools-0.1.0-py3-none-any.whl (10.7 kB view details)

Uploaded Python 3

File details

Details for the file trivial_torch_tools-0.1.0.tar.gz.

File metadata

  • Download URL: trivial_torch_tools-0.1.0.tar.gz
  • Upload date:
  • Size: 9.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.11.2 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.63.0 CPython/3.8.6

File hashes

Hashes for trivial_torch_tools-0.1.0.tar.gz
Algorithm Hash digest
SHA256 89e7627a3e5565b18c575861f2276020c26f3ab4e39bcb749512dee8c9b1f969
MD5 b495899ec32872b2c1cbecce233c4d4e
BLAKE2b-256 504bb952025da6f495a510597fa888fea4bb1a751b927308512c13b158a3bc75

See more details on using hashes here.

File details

Details for the file trivial_torch_tools-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: trivial_torch_tools-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 10.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.11.2 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.63.0 CPython/3.8.6

File hashes

Hashes for trivial_torch_tools-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c46b63ef50d6309ad557f409232ad3fed6435580c847885fdbd7847df09ef646
MD5 b11d7e529d7fb1b197c85780e553bf37
BLAKE2b-256 9c8ecf7ae7d939ee5a3b3c9255d3228d2cc92f5a23444a26304844f8e3a1897e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page