Skip to main content

Decorators for reducing pytorch boilerplate

Project description

What is this?

Functions and decorators I found myself rewriting for every pytorch project

How do I use this?

pip install trivial-torch-tools

from trivial_torch_tools import Sequential, init
import torch.nn as nn

class Model(nn.Module):
    @init.to_device()
    # ^ does self.to() and defaults to GPU if available (uses default_device variable)
    @init.save_and_load_methods(model_attributes=["layers"], basic_attributes=["input_shape"])
    # ^ creates self.save(path=self.path) and self.load(path=self.path)
    def __init__(self):
        self.input_shape = (81,81,3)
        layers = Sequential(input_shape=self.input_shape)
        # ^ dynamically compute the output shape/size of layers (the nn.Linear below)
        layers.add_module('conv1'   , nn.Conv2d(input_shape[0], 32, kernel_size=8, stride=4, padding=0))
        layers.add_module('relu1'   , nn.ReLU())
        layers.add_module('flatten' , nn.Flatten(start_dim=1, end_dim=-1))
        layers.add_module('linear1' , nn.Linear(in_features=layers.output_size, out_features=10)) 
        layers.add_module('sigmoid1', nn.Sigmoid())
        self.layers = layers

        # layers.output_size
        # layers.output_shape
        # layers.layer_shapes

# available tools
from trivial_torch_tools import *

core.default_device # defaults to cuda if available
core.to_tensor(nested_lists_of_arrays_tuples_and_more) # aggresively converts objects to tensors

# decorators for def __init__()
@model.init.to_device(device=default_device)
@model.init.save_and_load_methods(basic_attributes=[], model_attributes=[], path_attribute="path")
@model.init.forward_sequential_method
# decorators for def forward(): # or whatever 
@model.convert_each_arg.to_tensor() # Use to_tensor(which_args=[0]) to only convert first arg
@model.convert_each_arg.to_device() # Use to_device(which_args=[0]) to only convert first arg
@model.convert_each_arg.to_batched_tensor(number_of_dimensions=4) # 4 works for color images
@model.convert_each_arg.torch_tensor_from_opencv_format()

image.tensor_from_path(path)
image.pil_image_from_tensor(tensor)
image.torch_tensor_from_opencv_format(tensor_or_array)
image.opencv_tensor_from_torch_format(tensor)
image.opencv_array_from_pil_image(image_obj)

OneHotifier.tensor_from_argmax(tensor)             # [0.1,99,0,0,] => [0,1,0,0,]
OneHotifier.index_from_one_hot(tensor)             # [0,1,0,0,] => 2
OneHotifier.index_tensor_from_onehot_batch(tensor) # [[0,1,0,0,]] => [2]

import torch
converter = OneHotifier(possible_values=[ "thing0", ('thing', 1), {"thing":2} ])
converter.to_one_hot({"thing":2}) # >>> tensor([0,0,1])
converter.from_one_hot(torch.tensor([0,0,1])) # >>> {"thing":2}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

trivial_torch_tools-0.5.1.tar.gz (10.2 kB view details)

Uploaded Source

Built Distribution

trivial_torch_tools-0.5.1-py3-none-any.whl (11.3 kB view details)

Uploaded Python 3

File details

Details for the file trivial_torch_tools-0.5.1.tar.gz.

File metadata

  • Download URL: trivial_torch_tools-0.5.1.tar.gz
  • Upload date:
  • Size: 10.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.11.2 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.63.0 CPython/3.8.6

File hashes

Hashes for trivial_torch_tools-0.5.1.tar.gz
Algorithm Hash digest
SHA256 63fc420b0069dc911cf81eea984942e66f5947978f9487db31f6ef23e0fcc85f
MD5 121bf11e9436c73e41bdb39992990c6c
BLAKE2b-256 ba3fa241dfeac470c861a9374e8d8b2f8a046640fa24628be48cbdb8aa2e8e3f

See more details on using hashes here.

File details

Details for the file trivial_torch_tools-0.5.1-py3-none-any.whl.

File metadata

  • Download URL: trivial_torch_tools-0.5.1-py3-none-any.whl
  • Upload date:
  • Size: 11.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.11.2 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.63.0 CPython/3.8.6

File hashes

Hashes for trivial_torch_tools-0.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 89aabd1b0562bc5b2618bec6ada25e17bb65ebc9689596a1b733506acece3e63
MD5 2bc791d3e365a26f14994ed09852b5dc
BLAKE2b-256 1a8415dd31ee0372937b00a5b55b4d864e99d5ef398c3e715edd1e006210ec18

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page