Skip to main content

Decorators for reducing pytorch boilerplate

Project description

What is this?

Functions and decorators I found myself rewriting for every pytorch project

How do I use this?

pip install trivial-torch-tools

from trivial_torch_tools import Sequential, init
import torch.nn as nn

class Model(nn.Module):
    @init.to_device()
    # ^ does self.to() and defaults to GPU if available (uses default_device variable)
    @init.save_and_load_methods(model_attributes=["layers"], basic_attributes=["input_shape"])
    # ^ creates self.save(path=self.path) and self.load(path=self.path)
    def __init__(self):
        self.input_shape = (81,81,3)
        layers = Sequential(input_shape=self.input_shape)
        # ^ dynamically compute the output shape/size of layers (the nn.Linear below)
        layers.add_module('conv1'   , nn.Conv2d(input_shape[0], 32, kernel_size=8, stride=4, padding=0))
        layers.add_module('relu1'   , nn.ReLU())
        layers.add_module('flatten' , nn.Flatten(start_dim=1, end_dim=-1))
        layers.add_module('linear1' , nn.Linear(in_features=layers.output_size, out_features=10)) 
        layers.add_module('sigmoid1', nn.Sigmoid())
        self.layers = layers
        
        # layers.output_size
        # layers.output_shape
        # layers.layer_shapes
   
# available tools
from trivial_torch_tools import *

core.default_device # defaults to cuda if available
core.to_tensor(nested_lists_of_arrays_tuples_and_more) # aggresively converts objects to tensors

# decorators for def __init__()
@model.init.to_device(device=default_device)
@model.init.save_and_load_methods(basic_attributes=[], model_attributes=[], path_attribute="path")
@model.init.forward_sequential_method
# decorators for def forward(): # or whatever 
@model.convert_each_arg.to_tensor() # Use to_tensor(which_args=[0]) to only convert first arg
@model.convert_each_arg.to_device() # Use to_device(which_args=[0]) to only convert first arg
@model.convert_each_arg.to_batched_tensor(number_of_dimensions=4) # 4 works for color images
@model.convert_each_arg.torch_tensor_from_opencv_format()

image.tensor_from_path(path)
image.pil_image_from_tensor(tensor)
image.torch_tensor_from_opencv_format(tensor_or_array)
image.opencv_tensor_from_torch_format(tensor)
image.opencv_array_from_pil_image(image_obj)

OneHotifier.tensor_from_argmax(tensor)             # [0.1,99,0,0,] => [0,1,0,0,]
OneHotifier.index_from_one_hot(tensor)             # [0,1,0,0,] => 2
OneHotifier.index_tensor_from_onehot_batch(tensor) # [[0,1,0,0,]] => [2]

import torch
converter = OneHotifier(possible_values=[ "thing0", ('thing', 1), {"thing":2} ])
converter.to_one_hot({"thing":2}) # >>> tensor([0,0,1])
converter.from_one_hot(torch.tensor([0,0,1])) # >>> {"thing":2}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

trivial_torch_tools-0.6.0.tar.gz (2.1 MB view details)

Uploaded Source

Built Distribution

trivial_torch_tools-0.6.0-py3-none-any.whl (2.2 MB view details)

Uploaded Python 3

File details

Details for the file trivial_torch_tools-0.6.0.tar.gz.

File metadata

  • Download URL: trivial_torch_tools-0.6.0.tar.gz
  • Upload date:
  • Size: 2.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/6.6.0 pkginfo/1.9.6 requests/2.30.0 requests-toolbelt/1.0.0 tqdm/4.65.0 CPython/3.8.13

File hashes

Hashes for trivial_torch_tools-0.6.0.tar.gz
Algorithm Hash digest
SHA256 3fcb69df534cca32e50ea2c7404ac5226b743bd75750c78cc8e2056d12ce1658
MD5 17db46a1737e55775e7696c38cace114
BLAKE2b-256 2a9011ce89c667bdc4cffc9351a942aac49082ac42912fd88d1bce753f50ba22

See more details on using hashes here.

File details

Details for the file trivial_torch_tools-0.6.0-py3-none-any.whl.

File metadata

  • Download URL: trivial_torch_tools-0.6.0-py3-none-any.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/6.6.0 pkginfo/1.9.6 requests/2.30.0 requests-toolbelt/1.0.0 tqdm/4.65.0 CPython/3.8.13

File hashes

Hashes for trivial_torch_tools-0.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 577b2334fcd170bbc32a9703fb6cf051aa6d690f32096d52ce0c2a397f1b760c
MD5 b46df71d04153647204f9f26b0cdec51
BLAKE2b-256 92ffe0cfcc12e0330df2a316f97a911dca2b99c98314e62fea4c500a7fffca50

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page