Skip to main content

Decorators for reducing pytorch boilerplate

Project description

What is this?

Functions and decorators I found myself rewriting for every pytorch project

How do I use this?

pip install trivial-torch-tools

from trivial_torch_tools import Sequential, init
import torch.nn as nn

class Model(nn.Module):
    @init.to_device()
    # ^ does self.to() and defaults to GPU if available (uses default_device variable)
    @init.save_and_load_methods(model_attributes=["layers"], basic_attributes=["input_shape"])
    # ^ creates self.save(path=self.path) and self.load(path=self.path)
    def __init__(self):
        self.input_shape = (81,81,3)
        layers = Sequential(input_shape=self.input_shape)
        # ^ dynamically compute the output shape/size of layers (the nn.Linear below)
        layers.add_module('conv1'   , nn.Conv2d(input_shape[0], 32, kernel_size=8, stride=4, padding=0))
        layers.add_module('relu1'   , nn.ReLU())
        layers.add_module('flatten' , nn.Flatten(start_dim=1, end_dim=-1))
        layers.add_module('linear1' , nn.Linear(in_features=layers.output_size, out_features=10)) 
        layers.add_module('sigmoid1', nn.Sigmoid())
        self.layers = layers
        
        # layers.output_size
        # layers.output_shape
        # layers.layer_shapes
   
# available tools
from trivial_torch_tools import *

core.default_device # defaults to cuda if available
core.to_tensor(nested_lists_of_arrays_tuples_and_more) # aggresively converts objects to tensors

# decorators for def __init__()
@model.init.to_device(device=default_device)
@model.init.save_and_load_methods(basic_attributes=[], model_attributes=[], path_attribute="path")
@model.init.forward_sequential_method
# decorators for def forward(): # or whatever 
@model.convert_each_arg.to_tensor() # Use to_tensor(which_args=[0]) to only convert first arg
@model.convert_each_arg.to_device() # Use to_device(which_args=[0]) to only convert first arg
@model.convert_each_arg.to_batched_tensor(number_of_dimensions=4) # 4 works for color images
@model.convert_each_arg.torch_tensor_from_opencv_format()

image.tensor_from_path(path)
image.pil_image_from_tensor(tensor)
image.torch_tensor_from_opencv_format(tensor_or_array)
image.opencv_tensor_from_torch_format(tensor)
image.opencv_array_from_pil_image(image_obj)

OneHotifier.tensor_from_argmax(tensor)             # [0.1,99,0,0,] => [0,1,0,0,]
OneHotifier.index_from_one_hot(tensor)             # [0,1,0,0,] => 2
OneHotifier.index_tensor_from_onehot_batch(tensor) # [[0,1,0,0,]] => [2]

import torch
converter = OneHotifier(possible_values=[ "thing0", ('thing', 1), {"thing":2} ])
converter.to_one_hot({"thing":2}) # >>> tensor([0,0,1])
converter.from_one_hot(torch.tensor([0,0,1])) # >>> {"thing":2}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

trivial_torch_tools-0.6.2.tar.gz (2.1 MB view details)

Uploaded Source

Built Distribution

trivial_torch_tools-0.6.2-py3-none-any.whl (2.2 MB view details)

Uploaded Python 3

File details

Details for the file trivial_torch_tools-0.6.2.tar.gz.

File metadata

  • Download URL: trivial_torch_tools-0.6.2.tar.gz
  • Upload date:
  • Size: 2.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/6.6.0 pkginfo/1.9.6 requests/2.30.0 requests-toolbelt/1.0.0 tqdm/4.65.0 CPython/3.8.13

File hashes

Hashes for trivial_torch_tools-0.6.2.tar.gz
Algorithm Hash digest
SHA256 0d8b81ac9a20cad00f5ce0f8a88703f2b65d268b926f98c69094cbc97009c70d
MD5 b207aad1b4443e1f23898f3c20c4ffde
BLAKE2b-256 01e78f267ed4be770272041da887a536a51151fdfac9a93c0fe1385a2530a123

See more details on using hashes here.

File details

Details for the file trivial_torch_tools-0.6.2-py3-none-any.whl.

File metadata

  • Download URL: trivial_torch_tools-0.6.2-py3-none-any.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/6.6.0 pkginfo/1.9.6 requests/2.30.0 requests-toolbelt/1.0.0 tqdm/4.65.0 CPython/3.8.13

File hashes

Hashes for trivial_torch_tools-0.6.2-py3-none-any.whl
Algorithm Hash digest
SHA256 bcaa2911c118a41541f5f493bc1b49f9f3ee5e42d3f8f20516949818e1e6a10d
MD5 05d4948589cafd38a0212d90ec5e2f4e
BLAKE2b-256 3b8916bf27dea6f4b85b952bc8be65c5d52bdcb29292fcb50df304911284ab22

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page