A tools convert tensorrt engine to a fake onnx
Project description
TensorRT2ONNX
A tool convert TensorRT engine/plan to a fake onnx
Build an engine from onnx using trtexec tools
trtexec --verbose \
--nvtxMode=verbose \
--buildOnly \
--workspace=8192 \
--onnx=your_onnx.onnx \
--saveEngine=your_engine.engine \
--timingCacheFile=timing.cache \
--fp16 # use fp16
You will get a your_engine.engine
and a timing.cache
Parser network from engine using trtexec tools
trtexec --verbose \
--noDataTransfers \
--useCudaGraph \
--separateProfileRun \
--useSpinWait \
--nvtxMode=verbose \
--loadEngine=your_engine.engine \
--exportLayerInfo=graph.json \
--timingCacheFile=timing.cache
You will parser your_engine.engine
network information into graph.json
Install TensorRT2ONNX
pip3 install trt2onnx -i https://pypi.org/simple
Build a fake onnx from graph json
import onnx
from trt2onnx import build_onnx
# build a fake onnx from json
onnx_graph = build_onnx('graph.json')
# save the fake onnx as `fake.onnx`
onnx.save(onnx_graph, 'fake.onnx')
Build a fake onnx from engine
import onnx
from trt2onnx import build_onnx
# build a fake onnx from engine
onnx_graph = build_onnx('your_engine.engine')
# save the fake onnx as `fake.onnx`
onnx.save(onnx_graph, 'fake.onnx')
NOTICE !!
If you build engine use your own plugin,
please load the *.so
before build_onnx
function.
import ctypes
# load your plugin first
ctypes.cdll.LoadLibrary('your_plugin_0.so')
ctypes.cdll.LoadLibrary('your_plugin_1.so')
...
Use Netron to view your fake onnx
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
trt2onnx-0.0.2.tar.gz
(10.0 kB
view hashes)