Skip to main content

Python wrapper around MuleSoft DataWeave data transformation engine.

Project description

DataWeave Python Wrapper Build Status

Python wrapper around MuleSoft's DataWeave data transformation engine.

Installation

Add this package to your project using pip or pipenv:

# using pip
pip install ts-dataweave

# using pipenv
pipenv install ts-dataweave

The post-install script will download and extract the correct DataWeave command-line binary from MuleSoft's DataWeave CLI repository.

Usage

To use DataWeave, import ts_dataweave:

import ts_dataweave

ts_dataweave.run(payload, script, [timeout])

Runs a DataWeave script with the specified payloads. The input payloads and script are written to temporary files and then removed when the execution is complete.

The payload parameter should be a dictionary of ts_dataweave.Payload instances with string keys. The payloads will be added to DataWeave with the corresponding key as the name of the payload.

The script parameter should be a string, bytes, or file-like object containing the DataWeave script.

The timeout parameter is optional and should be the number of seconds that the script is allowed to run before an error is raised. The default timeout is 30 seconds.

The ts_dataweave.run() function returns a bytes object containing the output of the DataWeave script execution.

A bytes object can easily be converted to a UTF-8 string by using .decode("utf-8").

ts_dataweave.Payload

The dataweave.Payload object contains information about a DataWeave payload. Use the constructor:

ts_dataweave.Payload([payloadType], data)

The payloadType parameter should be either "json", "csv", or "xml". Alternatively, the members from the enumeration dataweave.PayloadType can also be used. Additional input types are not recognized at this time. If the payloadType parameter is omitted, the type will be guessed based on the first non-whitespace byte of data:

  • b"{" ➡️ "json"
  • b"[" ➡️ "json"
  • b"<" ➡️ "xml"
  • Else ➡️ "csv" If the payload is large or there is any chance of ambiguity, please specify payloadType.

The data parameter should be a string, bytes, dict, list, or file-like object containing the content of the payload. The payloadType parameter can be safely omitted if data is a dict or list.

Examples

Example with explicit payload types:

import ts_dataweave

print(ts_dataweave.run({
    "doc1": ts_dataweave.Payload(
        "xml", # can also use ts_dataweave.XML
        """<root>
            <firstname>Mike</firstname>
            <lastname>Foo</lastname>
        </root>"""
    ),
    "doc2": ts_dataweave.Payload(
        "json", # can also use ts_dataweave.JSON
        """{
            "birthday": "yesterday",
            "favoriteFood": "salami"
        }"""
    ),        
}, """contact: {
    firstname: doc1.root.firstname,
    lastname: doc1.root.lastname,
    food: doc2.favoriteFood,
    bday: doc2.birthday
}""").decode("utf-8"))

Payload data types can also be auto-detected:

import ts_dataweave

print(ts_dataweave.run({
    "doc1": ts_dataweave.Payload(
        """<root>
            <firstname>Mike</firstname>
            <lastname>Foo</lastname>
        </root>"""
    ),
    "doc2": ts_dataweave.Payload(
        """{
            "birthday": "yesterday",
            "favoriteFood": "salami"
        }"""
    ),        
}, """contact: {
    firstname: doc1.root.firstname,
    lastname: doc1.root.lastname,
    food: doc2.favoriteFood,
    bday: doc2.birthday
}""").decode("utf-8"))

Python dicts and lists can also be used for payload data with payload type safely omitted:

import ts_dataweave

print(ts_dataweave.run({
    "doc1": ts_dataweave.Payload(["Mike", "Foo"]),
    "doc2": ts_dataweave.Payload(
        {
            "birthday": "yesterday",
            "favoriteFood": "salami"
        }
    ),        
}, """contact: {
    firstname: doc1[0],
    lastname: doc1[1],
    food: doc2.favoriteFood,
    bday: doc2.birthday
}""").decode("utf-8"))

Tests

The repository includes a test suite.

python -m pytest

Compatibility

This package has been specifically developed and tested with Python 3.7 on Darwin (macOS) x86_64 and Linux x86_64 platforms.

Changelog

1.0.4

  • Update DataWeave CLI to v1.0.16 for macOS and Linux.

1.0.3

  • Optional auto-detection of payloadType in ts_dataweave.Payload constructor

1.0.2

  • Fix wrapping of ts_dataweave.Error with another ts_dataweave.Error
  • Sanitize payload IDs before executing DataWeave

1.0.1

  • Use temporary file to capture DataWeave output instead of the standard output stream.

1.0.0

  • Initial implementation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ts-dataweave-1.0.4.tar.gz (9.8 kB view details)

Uploaded Source

File details

Details for the file ts-dataweave-1.0.4.tar.gz.

File metadata

  • Download URL: ts-dataweave-1.0.4.tar.gz
  • Upload date:
  • Size: 9.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for ts-dataweave-1.0.4.tar.gz
Algorithm Hash digest
SHA256 f952fcd39f3c3aa9039cc10dc7b26a351216faab82342a3bb94b324ca47930f6
MD5 5694e33d41ba805b591e72a658c2a668
BLAKE2b-256 896de47ca6acd1eae5fb8af5c4df112f0287eb64e867e2e888f6c7a66667ddfb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page