Skip to main content

Time Series analysis and evaluation tools

Project description

ts-eval Time Series analysis and evaluation tools

pypi Build Status codecov python3 Code style: black License: MIT Contributions welcome


A set of tools to make time series analysis easier.

🧩 Current features

  • N-step ahead time series evaluation – using a Jupyter widget.
  • Friedman / Nemenyi rank test (posthoc) – to see which model statistically performs better.
  • Relative Metrics – rMSE, rMAE + Forecasted Value analogues.
  • Prediction Interval Metrics – MIS, rMIS, FVrMIS
  • Fixed fourier series generation – fixed in time according to pandas index
  • Naive/Seasonal models for baseline predictions (with prediction intervals)
  • Statsmodels n-step evaluation – helper functions to evaluate n-step ahead forecasts using Statsmodels models or naive/seasonal naive models.

👩🏾‍🎨 Widget Preview

In:

TSMetrics(target, sm_seas, default)
.use_reference(snaive)
.for_horizons(0, 1, 5, 23)
.for_time_slices(time_slices.all, time_slices.weekend)
.with_description()
.with_prediction_rankings(mtx.FVrMSE, mtx.FVrMIS)
.with_predictions_plot()
.show()

Out: Demo Screenshot

👩🏾‍🚒 Demo

For a more elaborate example, please check out the Demo Notebook.

Alternatively, check out interactive Binder demo

🤦🏾‍ Motivation

While working on a long term time series analysis project, I had a need to summarize and store performance metrics of different models and compare them. As it's daunting to do this across dozens of notebooks, I huddled over some code to do what I want in a few lines of code.

👩🏾‍🚀 Installation

  pip install ts-eval

📋 Release Planning:

  • Release 0.3
    • remove collection of deps in style [tests_and_bla_bla] to [tests,bla]
    • links to papers – AvgRelMAE (Davydenko and Fildes, 2013); link to Nemenyi paper / implementations
    • make graphs with PIs more narrow on 0,1,.. steps as there's too much space left (with an option to turn this off).
    • better API for the end user – minimize interaction with xarray
    • pep517 build / wheels / better setup.py as per Hynek
    • travis: add 3.8 default python when it's available
    • docs: supported metrics & API options
    • Maybe use api like Summary in statsmodels MLEModel class, it has extend methods and warn/info messages
    • pretty legend for lots like here https://studywolf.wordpress.com/2017/11/21/matplotlib-legends-for-mean-and-confidence-interval-plots/
    • Look for TODOs
    • changable colors
    • turn off colored display option
    • a nicer API for raw metrics container
    • codacy badge
    • boxplots to compare models (as an alternative)
    • violin plots to compare predictions – areas can be colored, different metrics on left and right (like relative...)
  • Release 0.4
    • holiday/fourier features model
    • fix viz module to have less of important stuff
    • a gif with project visualization
    • check shapes of input arrays (target vs preds), now it doesn't raise an error
    • Baseline prediction using target dataset (without explicit calculation, but losing some time points)

💡 Ideas

  • components
    • Graph: Visualize outliers from confidence interval
    • Multi-comparison component: scikit_posthocs lib or homecooked?
    • inspect true confidence interval coverage via sampling (was done in postings around bayesian dropout sampling)
    • xarrays: compare if compared datasets are actually equal (offets by dates, shapes, maybe even hashing)
    • bin together step performance, like steps 0-1, 2-5, 6-12, 13-24
    • highlight regions using a mask (holidays, etc.)
    • option to view interactively points using widget (plotly)?
    • diagnostics: bias to over / underestimate points
    • animated graphs for change in seasonality
  • features
    • example notebook for fourier?
    • tests for fourier
    • nint generation
  • utils:
    • model adaptor (for different models, generic) which generates 3d prediction dataset. For stastmodels using dyn forecast or kalman filter
    • future importance calculator, but only if I can manipulate input features
    • feature selection using PACF / prewhiten?
  • project
  • sMAPE & MASE can be added for the jupyter evaluation tables
  • ? Residual stats: since I have residuals => Ljung-Box, Heteroscedasticity test, Jarque-Bera – like in statsmodels results, but probably these stats were inspected already by the user... and on which step should they be computed then?

See also

🤹🏼‍♂️ Development

Recommended development workflow:

pipenv install -e .[dev]
pipenv shell

The library doesn't use Flit/Poetry, so the suggested workflow is based on Pipenv (as per https://github.com/pypa/pipenv/issues/1911). Pipfile* are ignored in the .gitignore.

Changelog

0.2.1 (2019-10-18)

Fixes

Outdated import in wheel version of the package.

0.2.0 (2019-10-16)

Features

  • Multiple prediction ranking with Friedman Nemenyi posthoc.
  • Visualization of prediction intervals
  • Indication of prediction ranking in a colorful table
  • Rewrite of the internal computation machinery

0.1.0 (2019-10-04)

Features

  • N-step ahead evaluation widget for Jupyter
  • Absolute & relative metrics for point forecasts and prediction intervals (MSE, MAE, rMSE, rMAE, MIS, rMIS)
  • Naive/Seasonal models for baseline (with prediction intervals)
  • Helper functions to evaluate n-step ahead forecasts using Statsmodels models or naive/seasonal naive models.
  • Holiday features generation and model evaluation on holiday datetimes.

0.0.1 (2019-09-18)

Features

  • Fixed fourier series generation (fixed in time according to pandas index)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ts-eval-0.2.1.tar.gz (1.2 MB view details)

Uploaded Source

Built Distribution

ts_eval-0.2.1-py2.py3-none-any.whl (39.1 kB view details)

Uploaded Python 2Python 3

File details

Details for the file ts-eval-0.2.1.tar.gz.

File metadata

  • Download URL: ts-eval-0.2.1.tar.gz
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.8

File hashes

Hashes for ts-eval-0.2.1.tar.gz
Algorithm Hash digest
SHA256 c59c728ddc1fa6d6120532fca37120380f8e7e0d23ba7f2f66da0418f2f41170
MD5 fcaa47cee646b54482704c7b63c72a5c
BLAKE2b-256 14f36476b3838d6d4c66d1b6c142fdd8ee9ccf599414b2cd9ab8319d65998cb5

See more details on using hashes here.

File details

Details for the file ts_eval-0.2.1-py2.py3-none-any.whl.

File metadata

  • Download URL: ts_eval-0.2.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 39.1 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.8

File hashes

Hashes for ts_eval-0.2.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 fd9b5e7d33200bc42615a239ba67a6a35dbd0771494f71c90cd48a28d24d9417
MD5 d510f55821e3496fa75b42f2cfedb009
BLAKE2b-256 bfe458611f3330f4cf4be1214d6f422c9689c5c091d007d20bf17568f8c38386

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page