Time Series Deep Learning Anomaly Detection
Project description
# Time Series Anomaly detection based on Deep Learning
TSAD is a Python module created for solving Anomaly Detection problems with time series data. The module is based on deep learning techniques.
The main meaning of this module are:
Forecast a multivariate Time Series (TS) one point ahead (Also works for univariate TS)
Compute residuals between forecast and true values
Apply analysis of residuals (default is Hoteling Statics)
Plot and return anomalies
This module allows forecast multi-step ahead both multivariate and univariate time series also.
As forecasting algorithms were implemented or will be implemented:
A simple one-layer LSTM network (LSTM)
A two-layer LSTM network (DeepLSTM)
A bi-directional LSTM network (BLSTM)
LSTM encoder-decoder (EncDec-AD)
LSTM autoencoder (LSTM-AE);
Convolutional LSTM network (ConvLSTM)
Convolutional Bi-directional LSTM network (CBLSTM)
Multi-Scale Convolutional Recurrent Encoder-Decoder (MSCRED)
Actually, the possibility of the module allows you to use any own forecasting algorithm, computer of residuals, or evaluator of residuals.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file tsad-0.8.tar.gz
.
File metadata
- Download URL: tsad-0.8.tar.gz
- Upload date:
- Size: 14.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.5.0.1 requests/2.25.1 setuptools/54.2.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 32a33f09cc26ceee1e4de6e348477b6f5a37ae9a708561cc0ad7ec7213d7afdf |
|
MD5 | 5f952ada5cab9e40182262b694e6406e |
|
BLAKE2b-256 | 4c9823e07bc2ddbb3d9b8861d1508bcf89e75547b305033fb3cb2023ddda201d |
File details
Details for the file tsad-0.8-py3-none-any.whl
.
File metadata
- Download URL: tsad-0.8-py3-none-any.whl
- Upload date:
- Size: 16.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.5.0.1 requests/2.25.1 setuptools/54.2.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 954d0f3c5f1eb9f2e8cfeced395fd78891eb8e1376596c4c25ac18337628eb52 |
|
MD5 | 9e10bedf22861d3b680d0b95e7378fd6 |
|
BLAKE2b-256 | 3f955d940d4624ebb35ed7081e076daf96172227602e726397f9308ab571ba63 |