Use LLMs in SQLite and DuckDB
Project description
tsellm: Use LLMs in SQLite and DuckDB
tsellm is the easiest way to access LLMs from SQLite or DuckDB.
pip install tsellm
cat <<EOF | tee >(sqlite3 prompts.sqlite3) | duckdb prompts.duckdb
CREATE TABLE prompts ( p TEXT);
INSERT INTO prompts VALUES('how are you?');
INSERT INTO prompts VALUES('is this real life?');
EOF
llm install llm-gpt4all
tsellm prompts.duckdb "select prompt(p, 'orca-mini-3b-gguf2-q4_0') from prompts"
tsellm prompts.sqlite3 "select prompt(p, 'orca-2-7b') from prompts"
Behind the scenes, tsellm is based on the beautiful llm library, so you can use any of its plugins:
Embeddings
llm install llm-sentence-transformers
llm sentence-transformers register all-MiniLM-L12-v2
llm install llm-embed-hazo # dummy embedding model for demonstration purposes
tsellm prompts.sqlite3 "select embed(p, 'sentence-transformers/all-MiniLM-L12-v2')"
Embedding JSON
Recursively
If you have JSON
columns, you can embed these object recursively.
That is, an embedding vector of floats will replace each text occurrence in the object.
cat <<EOF | tee >(sqlite3 prompts.sqlite3) | duckdb prompts.duckdb
CREATE TABLE people(d JSON);
INSERT INTO people (d) VALUES
('{"name": "John Doe", "age": 30, "hobbies": ["reading", "biking"]}'),
('{"name": "Jane Smith", "age": 25, "hobbies": ["painting", "traveling"]}')
EOF
SQLite
tsellm prompts.sqlite3 "select json_embed(d, 'hazo') from people"
Output
('{"name": [4.0, 3.0,..., 0.0], "age": 30, "hobbies": [[7.0, 0.0,..., 0.0], [6.0, 0.0, ..., 0.0]]}',)
('{"name": [4.0, 5.0, ,..., 0.0], "age": 25, "hobbies": [[8.0, 0.0,..., 0.0], [9.0, 0.0,..., 0.0]]}',)
DuckDB
tsellm prompts.duckdb "select json_embed(d, 'hazo') from people"
Output
('{"name": [4.0, 3.0,..., 0.0], "age": 30, "hobbies": [[7.0, 0.0,..., 0.0], [6.0, 0.0, ..., 0.0]]}',)
('{"name": [4.0, 5.0, ,..., 0.0], "age": 25, "hobbies": [[8.0, 0.0,..., 0.0], [9.0, 0.0,..., 0.0]]}',)
Embeddings for binary (BLOB
) columns
wget https://tselai.com/img/flo.jpg
sqlite3 images.sqlite3 <<EOF
CREATE TABLE images(name TEXT, type TEXT, img BLOB);
INSERT INTO images(name,type,img) VALUES('flo','jpg',readfile('flo.jpg'));
EOF
llm install llm-clip
tsellm images.sqlite3 "select embed(img, 'clip') from images"
Multiple Prompts
With a single query you can easily access get prompt responses from different LLMs:
tsellm prompts.sqlite3 "
select p,
prompt(p, 'orca-2-7b'),
prompt(p, 'orca-mini-3b-gguf2-q4_0'),
embed(p, 'sentence-transformers/all-MiniLM-L12-v2')
from prompts"
Interactive Shell
If you don't provide an SQL query, you'll enter an interactive shell instead.
tsellm prompts.db
Installation
pip install tsellm
How
tsellm relies on the following facts:
- SQLite is bundled with the standard Python library (
import sqlite3
) - Python 3.12 ships with a SQLite interactive shell
- one can create Python-written user-defined functions to be used in SQLite queries (see create_function)
- Simon Willison has gone through the process of creating the beautiful llm Python library and CLI
Development
pip install -e '.[test]'
pytest
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file tsellm-0.1.0a15.tar.gz
.
File metadata
- Download URL: tsellm-0.1.0a15.tar.gz
- Upload date:
- Size: 11.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f692b89c963357fd7044d72d26cac5970906c2992d922c88a0a06d39462ff47c |
|
MD5 | 115b2d5aae6e298f5f47f03537d5d041 |
|
BLAKE2b-256 | 263542160fb3d711d6a41c67cbf84253ac6a4d79541dd97f9088b9876eec841b |
File details
Details for the file tsellm-0.1.0a15-py3-none-any.whl
.
File metadata
- Download URL: tsellm-0.1.0a15-py3-none-any.whl
- Upload date:
- Size: 8.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cca2db77a442742bb9e3ec1771233ed26010f22a052f33cc97592f63f8ae5008 |
|
MD5 | 7523525ec3c957ef5f26f006262f3172 |
|
BLAKE2b-256 | 793bc0f685785bb890e429406236eacd1cb8660259961dbbd937a0473a8ee6ff |