Skip to main content

Use LLMs in SQLite and DuckDB

Project description

tsellm: Use LLMs in SQLite and DuckDB

Github PyPI Documentation Status Linkedin Github Sponsors pip installs Tests codecov License

tsellm is the easiest way to access LLMs from SQLite or DuckDB.

pip install tsellm
cat <<EOF | tee >(sqlite3 prompts.sqlite3) | duckdb prompts.duckdb
CREATE TABLE prompts ( p TEXT);
INSERT INTO prompts VALUES('how are you?');
INSERT INTO prompts VALUES('is this real life?');
EOF
llm install llm-gpt4all
tsellm prompts.duckdb "select prompt(p, 'orca-mini-3b-gguf2-q4_0') from prompts"
tsellm prompts.sqlite3 "select prompt(p, 'orca-2-7b') from prompts"

Behind the scenes, tsellm is based on the beautiful llm library, so you can use any of its plugins:

Embeddings

llm install llm-sentence-transformers
llm sentence-transformers register all-MiniLM-L12-v2
tsellm prompts.sqlite3 "select embed(p, 'sentence-transformers/all-MiniLM-L12-v2')"

Embeddings for binary (BLOB) columns

wget https://tselai.com/img/flo.jpg
sqlite3 images.sqlite3 <<EOF
CREATE TABLE images(name TEXT, type TEXT, img BLOB);
INSERT INTO images(name,type,img) VALUES('flo','jpg',readfile('flo.jpg'));
EOF
llm install llm-clip
tsellm images.sqlite3 "select embed(img, 'clip') from images"

Multiple Prompts

With a single query you can easily access get prompt responses from different LLMs:

tsellm prompts.sqlite3 "
        select p,
        prompt(p, 'orca-2-7b'),
        prompt(p, 'orca-mini-3b-gguf2-q4_0'),
        embed(p, 'sentence-transformers/all-MiniLM-L12-v2') 
        from prompts"

Interactive Shell

If you don't provide an SQL query, you'll enter an interactive shell instead.

tsellm prompts.db

til

Installation

pip install tsellm

How

tsellm relies on the following facts:

  • SQLite is bundled with the standard Python library (import sqlite3)
  • Python 3.12 ships with a SQLite interactive shell
  • one can create Python-written user-defined functions to be used in SQLite queries (see create_function)
  • Simon Willison has gone through the process of creating the beautiful llm Python library and CLI

Development

pip install -e '.[test]'
pytest

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tsellm-0.1.0a14.tar.gz (10.6 kB view details)

Uploaded Source

Built Distribution

tsellm-0.1.0a14-py3-none-any.whl (8.0 kB view details)

Uploaded Python 3

File details

Details for the file tsellm-0.1.0a14.tar.gz.

File metadata

  • Download URL: tsellm-0.1.0a14.tar.gz
  • Upload date:
  • Size: 10.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for tsellm-0.1.0a14.tar.gz
Algorithm Hash digest
SHA256 a23f84874da14c6e0fb2f13f298529d1bb79940b94bd9bccb7e9236a6b9c2c90
MD5 bc8dc2175a9018a02fb34725d0ced4ba
BLAKE2b-256 8a794cc37d075f8de5e1faac424e85c55f2bb7a31972b271ff7aee1e6e607172

See more details on using hashes here.

File details

Details for the file tsellm-0.1.0a14-py3-none-any.whl.

File metadata

  • Download URL: tsellm-0.1.0a14-py3-none-any.whl
  • Upload date:
  • Size: 8.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for tsellm-0.1.0a14-py3-none-any.whl
Algorithm Hash digest
SHA256 60a44114703a264483bf929a2e2d06e44be1bc8851d13c8c5ea89ec98013344b
MD5 c8751bc337e5622aef62033743c9153d
BLAKE2b-256 2291c1c067abddd434c9c90a3df864199ccb16135d04c67ba5bbddbb057ee4e0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page