Skip to main content

The tree sequence toolkit.

Project description

The tree sequence toolkit.

Tskit is a cross-platform library for the storage and analysis of large-scale genetic genealogy and variation data. Please see the documentation for further details.

Tskit is highly portable, and provides a number of installation options.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tskit-0.5.4.tar.gz (413.7 kB view details)

Uploaded Source

Built Distributions

tskit-0.5.4-cp311-cp311-win_amd64.whl (408.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

tskit-0.5.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tskit-0.5.4-cp311-cp311-macosx_10_9_universal2.whl (651.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

tskit-0.5.4-cp310-cp310-win_amd64.whl (408.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

tskit-0.5.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tskit-0.5.4-cp310-cp310-macosx_11_0_x86_64.whl (441.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

tskit-0.5.4-cp39-cp39-win_amd64.whl (446.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

tskit-0.5.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tskit-0.5.4-cp39-cp39-macosx_11_0_x86_64.whl (441.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

tskit-0.5.4-cp38-cp38-win_amd64.whl (446.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

tskit-0.5.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tskit-0.5.4-cp38-cp38-macosx_10_15_x86_64.whl (441.1 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

tskit-0.5.4-cp37-cp37m-win_amd64.whl (445.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

tskit-0.5.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

tskit-0.5.4-cp37-cp37m-macosx_10_15_x86_64.whl (440.4 kB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file tskit-0.5.4.tar.gz.

File metadata

  • Download URL: tskit-0.5.4.tar.gz
  • Upload date:
  • Size: 413.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for tskit-0.5.4.tar.gz
Algorithm Hash digest
SHA256 be1a6381c72a95f0011bea26ca317e1b4503b8d2dcd87096c68aa16c8946c6fe
MD5 da653a75e40449eb45d0c7fa3b12ec1e
BLAKE2b-256 eeb3137716b4ee755dff17928217922fe15880212b9ce2f3391ab77335caebb0

See more details on using hashes here.

File details

Details for the file tskit-0.5.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: tskit-0.5.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 408.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for tskit-0.5.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4db02662beaced8020afb8f5dfb625866a91edae6558cf1c8e229366864d8dc9
MD5 5e332ca325b7d9c06838d67ec68f2a31
BLAKE2b-256 cbcb75d2ac5b7be2e17d12af3985ef899c33e2902ce98a6d684686da0dab16a2

See more details on using hashes here.

File details

Details for the file tskit-0.5.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tskit-0.5.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a04662e29c8a6ba402859e2a35d5bc2e6e828f39e592275644df6e294b8b1d18
MD5 cc68274dd90d57a97ca5f9218fcffad1
BLAKE2b-256 8c4e0089529c1df1d4336e71dac5942118b7090b83f10541efed550ec5d5e644

See more details on using hashes here.

File details

Details for the file tskit-0.5.4-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for tskit-0.5.4-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 dae9f0e9fe5fd8096c422601cc162d9ebb32343e6a92b09fc5a34b848cc81f55
MD5 3103549ae56d2d3544fc5446033cc830
BLAKE2b-256 3dfbf6176ac140e86c515978f01780ec5acad3d0f5baaa923a58e9fbafca4501

See more details on using hashes here.

File details

Details for the file tskit-0.5.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tskit-0.5.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 408.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for tskit-0.5.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 83566f9150dd25b6f0777ed96aa31465ce6a598f5647b8f76ffefa3c3634a91a
MD5 4465328b35eb138cb21d163c1666b455
BLAKE2b-256 129bf0f545e56cc048fd01d656f5c8898ecfecb0bf1f5f74aff9e6ba013ba515

See more details on using hashes here.

File details

Details for the file tskit-0.5.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tskit-0.5.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 47ac8d01bb6f210b42815a0e8f0751cb59edd1d254ee806cf890526110736794
MD5 f018df22d059a0ce327d4767e4e65a42
BLAKE2b-256 c1c05d3e2103b30329c4ee7c0f3a6c719809141a727368617116e3ed0e1c8e1f

See more details on using hashes here.

File details

Details for the file tskit-0.5.4-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for tskit-0.5.4-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 9dc9e4f42b67f082bb4b9f8557ec38d53a0f24c9ef90405a19d01a1d05ef160d
MD5 697799d9903c1653d1f267e40290fd18
BLAKE2b-256 dbe7b831a79ef8eebd3ad78f6ea2d3e3eed1a901937807754b0f0a9456631dc9

See more details on using hashes here.

File details

Details for the file tskit-0.5.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tskit-0.5.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 446.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for tskit-0.5.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d7d4c2dea3f3a98369536ef41458a71ed4cbae8ea2a433020f1e46fa8355434b
MD5 3bc380d49952fc537417bb8574f35f41
BLAKE2b-256 25277a41cef4e259e3c4ea41b6ee66085c0661664c208ccfee59c6f59ad6ce6b

See more details on using hashes here.

File details

Details for the file tskit-0.5.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tskit-0.5.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a31a7893ae8694e0441c0e69598117802087da102da2650368ff44c68b69b369
MD5 d814db6e18940241bed09368de2791ea
BLAKE2b-256 97eba6bc545857b250b05165412f2bd655164ec8023c0d2231190656c4e9c68b

See more details on using hashes here.

File details

Details for the file tskit-0.5.4-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for tskit-0.5.4-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 64ebc8598387f1e5a621eeb78ba5e74c6216e79f18e6938b446b5071760c70a1
MD5 6dfcbfbab9c08eff542114fd3d8b4d5a
BLAKE2b-256 7cf722c843c377028f18e5383d4e9ad93a24b864fcc1aa8534cf37ecd471229c

See more details on using hashes here.

File details

Details for the file tskit-0.5.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tskit-0.5.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 446.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for tskit-0.5.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4342388aa170b3d113956d43b99f672ebea26b7d8b14ec2a17715fa5b6744c65
MD5 ad2b1428464c873e14c220ceb7e7ee50
BLAKE2b-256 06aad06ff98c1f96f6cfdfad8e6a6e4624525d48f5f1ac9f9e8f53ca8f67d3f8

See more details on using hashes here.

File details

Details for the file tskit-0.5.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tskit-0.5.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1ab873bf9f383f0adaa7f3479a0a6daaeb6cfd438a5001c71ad8c5f53a014414
MD5 a9569ffbe4335c470faa62c3dbb49983
BLAKE2b-256 bc85ae76a16481ed3c9c8fdc7c77a1a68cfe03e93646ef079fb9137a9e2f6d6e

See more details on using hashes here.

File details

Details for the file tskit-0.5.4-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tskit-0.5.4-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 83edd3b7807b6265394d2a96b94f5d0d0c1d57c6ba27f6ff177b080c988c2a3d
MD5 8c84cdb900101276943d32bd48bfade8
BLAKE2b-256 cf8c6f58588d95ebc417c1142b89a01ac983ddbd61cae3dc66335bb6b29d5d88

See more details on using hashes here.

File details

Details for the file tskit-0.5.4-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tskit-0.5.4-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 445.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for tskit-0.5.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3ec9b44ceea1c7a68673c2bd2239205be152be12a4bd2a4c4876376cb0a94d4b
MD5 014cffc448a8e292299e77b522909bfd
BLAKE2b-256 d2fb220ebcec06fe163b76fdbade8a12a9e47b8a28c0f1a2db9f665897ffd44b

See more details on using hashes here.

File details

Details for the file tskit-0.5.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tskit-0.5.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f3f984f7776d3bf60639b89f8f53e1994dfd54a45b2d4566a40b05f132a408b
MD5 05fbeae0f435f98792618f0c3724caf7
BLAKE2b-256 b845a0a3be50bc6403515c81eb1ef66925d9129e9854b9ec71a7fd45aff29655

See more details on using hashes here.

File details

Details for the file tskit-0.5.4-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tskit-0.5.4-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 5435111c056544d0d60113287c20da3e0b5af7918c63f5af98c1975e13bef867
MD5 e6f9dd62b72fd198917d962cb61255ab
BLAKE2b-256 2ca55cbbbddfad828beff807d5f19dac3587eba9d8fe3e84b20d6171b42aaee2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page