Skip to main content

A python library for timeseries smoothing and outlier detection in a vectorized way.

Project description

tsmoothie

A python library for time-series smoothing and outlier detection in a vectorized way.

Overview

tsmoothie computes, in a fast and efficient way, the smoothing of single or multiple time-series.

The smoothing techniques available are:

  • Exponential Smoothing
  • Convolutional Smoothing with various window types (constant, hanning, hamming, bartlett, blackman)
  • Polynomial Smoothing
  • Spline Smoothing of various kind (linear, cubic, natural cubic)
  • Gaussian Smoothing
  • Binner Smoothing
  • LOWESS
  • Kalman Smoothing with customizable components (level, trend, seasonality, long seasonality)

tsmoothie provides the calculation of intervals as result of the smoothing process. This can be useful to identify outliers and anomalies in time-series.

The interval types available are:

  • sigma intervals
  • confidence intervals
  • predictions intervals
  • kalman intervals

The adoption of this type of intervals depends on the smoothing method used.

tsmoothie can also carry out a sliding smoothing approach. This is possible splitting the time-series into equal sized pieces and smoothing them independently. As always, this functionality is implemented in a vectorized way through the WindowWrapper class.

Media

Blog Posts:

Installation

pip install tsmoothie

The module depends only on NumPy, SciPy and simdkalman. Python 3.6 or above is supported.

Usage

Below a couple of examples of how tsmoothie works. Full examples are available in the notebooks folder.

# import libraries
import numpy as np
import matplotlib.pyplot as plt
from tsmoothie.utils_func import sim_randomwalk
from tsmoothie.smoother import LowessSmoother

# generate 3 randomwalks of lenght 200
np.random.seed(123)
data = sim_randomwalk(n_series=3, timesteps=200, 
                      process_noise=10, measure_noise=30)

# operate smoothing
smoother = LowessSmoother(smooth_fraction=0.1, iterations=1)
smoother.smooth(data)

# generate intervals
low, up = smoother.get_intervals('prediction_interval')

# plot the smoothed timeseries with intervals
plt.figure(figsize=(18,5))

for i in range(3):

    plt.subplot(1,3,i+1)
    plt.plot(smoother.smooth_data[i], linewidth=3, color='blue')
    plt.plot(smoother.data[i], '.k')
    plt.title(f"timeseries {i+1}"); plt.xlabel('time')

    plt.fill_between(range(len(smoother.data[i])), low[i], up[i], alpha=0.3)

Randomwalk Smoothing

# import libraries
import numpy as np
import matplotlib.pyplot as plt
from tsmoothie.utils_func import sim_seasonal_data
from tsmoothie.smoother import LowessSmoother

# generate 3 periodic timeseries of lenght 300
np.random.seed(123)
data = sim_seasonal_data(n_series=3, timesteps=300, 
                         freq=24, measure_noise=30)

# operate smoothing
smoother = LowessSmoother(smooth_fraction=0.05, iterations=1)
smoother.smooth(data)

# generate intervals
low, up = smoother.get_intervals('prediction_interval')

# plot the smoothed timeseries with intervals
plt.figure(figsize=(18,5))

for i in range(3):

    plt.subplot(1,3,i+1)
    plt.plot(smoother.smooth_data[i], linewidth=3, color='blue')
    plt.plot(smoother.data[i], '.k')
    plt.title(f"timeseries {i+1}"); plt.xlabel('time')

    plt.fill_between(range(len(smoother.data[i])), low[i], up[i], alpha=0.3)

Sinusoidal Smoothing

References

  • Polynomial, Spline, Gaussian and Binner smoothing are carried out building a regression on custom basis expansions. These implementations are based on the amazing intuitions of Matthew Drury available here
  • Time Series Modelling with Unobserved Components, Matteo M. Pelagatti

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tsmoothie-0.1.7.tar.gz (16.4 kB view details)

Uploaded Source

Built Distribution

tsmoothie-0.1.7-py3-none-any.whl (17.5 kB view details)

Uploaded Python 3

File details

Details for the file tsmoothie-0.1.7.tar.gz.

File metadata

  • Download URL: tsmoothie-0.1.7.tar.gz
  • Upload date:
  • Size: 16.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for tsmoothie-0.1.7.tar.gz
Algorithm Hash digest
SHA256 56db8bf63c4ef5f82b95859d9bd64907832e18212680e2f965627be04619ab3d
MD5 c7af5050e0d37870ba440c528a0f7068
BLAKE2b-256 9447d2bfb37fe40eeab8766cdc380de0921871102a654f09eed413d5814f71a2

See more details on using hashes here.

File details

Details for the file tsmoothie-0.1.7-py3-none-any.whl.

File metadata

  • Download URL: tsmoothie-0.1.7-py3-none-any.whl
  • Upload date:
  • Size: 17.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for tsmoothie-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 fae6469b50a88fe01da3fb06c22ec5a7438ff7e6e0b7e8bbe8d256f958587d78
MD5 2eb95c47c6eb98d62173269c3f8d4233
BLAKE2b-256 cee17f6c5efe1219e29b9de5c1540aede516b8142475258652ebbd45fb0cedbf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page