Skip to main content

A python library for timeseries smoothing and outlier detection in a vectorized way.

Project description

tsmoothie

A python library for time-series smoothing and outlier detection in a vectorized way.

Overview

tsmoothie computes, in a fast and efficient way, the smoothing of single or multiple time-series.

The smoothing techniques available are:

  • Exponential Smoothing
  • Convolutional Smoothing with various window types (constant, hanning, hamming, bartlett, blackman)
  • Polynomial Smoothing
  • Spline Smoothing of various kind (linear, cubic, natural cubic)
  • Gaussian Smoothing
  • Binner Smoothing
  • LOWESS
  • Seasonal Decompose Smoothing of various kind (convolution, lowess, natural cubic spline)
  • Kalman Smoothing with customizable components (level, trend, seasonality, long seasonality)

tsmoothie provides the calculation of intervals as result of the smoothing process. This can be useful to identify outliers and anomalies in time-series.

The interval types available are:

  • sigma intervals
  • confidence intervals
  • predictions intervals
  • kalman intervals

The adoption of this type of intervals depends on the smoothing method used.

tsmoothie can also carry out a sliding smoothing approach. This is possible splitting the time-series into equal sized pieces and smoothing them independently. As always, this functionality is implemented in a vectorized way through the WindowWrapper class.

Media

Blog Posts:

Installation

pip install tsmoothie

The module depends only on NumPy, SciPy and simdkalman. Python 3.6 or above is supported.

Usage

Below a couple of examples of how tsmoothie works. Full examples are available in the notebooks folder.

# import libraries
import numpy as np
import matplotlib.pyplot as plt
from tsmoothie.utils_func import sim_randomwalk
from tsmoothie.smoother import LowessSmoother

# generate 3 randomwalks of lenght 200
np.random.seed(123)
data = sim_randomwalk(n_series=3, timesteps=200, 
                      process_noise=10, measure_noise=30)

# operate smoothing
smoother = LowessSmoother(smooth_fraction=0.1, iterations=1)
smoother.smooth(data)

# generate intervals
low, up = smoother.get_intervals('prediction_interval')

# plot the smoothed timeseries with intervals
plt.figure(figsize=(18,5))

for i in range(3):

    plt.subplot(1,3,i+1)
    plt.plot(smoother.smooth_data[i], linewidth=3, color='blue')
    plt.plot(smoother.data[i], '.k')
    plt.title(f"timeseries {i+1}"); plt.xlabel('time')

    plt.fill_between(range(len(smoother.data[i])), low[i], up[i], alpha=0.3)

Randomwalk Smoothing

# import libraries
import numpy as np
import matplotlib.pyplot as plt
from tsmoothie.utils_func import sim_seasonal_data
from tsmoothie.smoother import DecomposeSmoother

# generate 3 periodic timeseries of lenght 300
np.random.seed(123)
data = sim_seasonal_data(n_series=3, timesteps=300, 
                         freq=24, measure_noise=30)

# operate smoothing
smoother = DecomposeSmoother(smooth_type='lowess', periods=24,
                             smooth_fraction=0.3)
smoother.smooth(data)

# generate intervals
low, up = smoother.get_intervals('sigma_interval')

# plot the smoothed timeseries with intervals
plt.figure(figsize=(18,5))

for i in range(3):

    plt.subplot(1,3,i+1)
    plt.plot(smoother.smooth_data[i], linewidth=3, color='blue')
    plt.plot(smoother.data[i], '.k')
    plt.title(f"timeseries {i+1}"); plt.xlabel('time')

    plt.fill_between(range(len(smoother.data[i])), low[i], up[i], alpha=0.3)

Sinusoidal Smoothing

References

  • Polynomial, Spline, Gaussian and Binner smoothing are carried out building a regression on custom basis expansions. These implementations are based on the amazing intuitions of Matthew Drury available here
  • Time Series Modelling with Unobserved Components, Matteo M. Pelagatti

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tsmoothie-0.2.0.tar.gz (18.0 kB view details)

Uploaded Source

Built Distribution

tsmoothie-0.2.0-py3-none-any.whl (19.1 kB view details)

Uploaded Python 3

File details

Details for the file tsmoothie-0.2.0.tar.gz.

File metadata

  • Download URL: tsmoothie-0.2.0.tar.gz
  • Upload date:
  • Size: 18.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for tsmoothie-0.2.0.tar.gz
Algorithm Hash digest
SHA256 37280145fe61519b56a82bb3932ca0dbcac61febd8b4a6ea71d7f8414c72fbad
MD5 f5be0e013d7927dba5e985743e887d6a
BLAKE2b-256 92168211bc2a80a813bf23a6b62356722a677483e2b814388a55dbfc657f4278

See more details on using hashes here.

File details

Details for the file tsmoothie-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: tsmoothie-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 19.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for tsmoothie-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3ba38484226d4faf0c72ee0c4a036d87ec0cdbf37ae8c67bf1db40871ef8393f
MD5 d75a5e85f86c26dbcc0863ff79eecb11
BLAKE2b-256 9bcf424996a4e937657945b4b67b2da51ff3275035b614f608c736e29946e227

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page