t-SNE accelerated with PyTorch
Project description
t-SNE pytorch Implementation with CUDA
CUDA-accelerated PyTorch implementation of the t-stochastic neighbor embedding algorithm described in Visualizing Data using t-SNE.
Installation
Requires Python 3.7
Install via Pip
pip3 install tsne-torch
Install from Source
git clone https://github.com/palle-k/tsne-pytorch.git
cd tsne-pytorch
python3 setup.py install
Usage
from tsne_torch import TorchTSNE as TSNE
X = ... # shape (n_samples, d)
X_emb = TSNE(n_components=2, perplexity=30, n_iter=1000, verbose=True).fit_transform(X) # returns shape (n_samples, 2)
Command-Line Usage
python3 -m tsne_torch --xfile <path> --yfile <path>
Example
This is our result compare to result of python implementation.
- PyTorch result
- python result
Credit
This code highly inspired by
- author's python implementation code here.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
tsne-torch-1.0.0.tar.gz
(5.2 kB
view details)
Built Distribution
tsne_torch-1.0.0-py3.8.egg
(8.6 kB
view details)
File details
Details for the file tsne-torch-1.0.0.tar.gz
.
File metadata
- Download URL: tsne-torch-1.0.0.tar.gz
- Upload date:
- Size: 5.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 31f6d56475e73c0d990c412ef11f9833b6840812aaa93994b2d565248d9b9f62 |
|
MD5 | 3e9f74bcfa6113161d871f545f776957 |
|
BLAKE2b-256 | 810fce6e9597aa0eb0b60fd627a43aecdcde264d0d85e8c86d9758335385012d |
File details
Details for the file tsne_torch-1.0.0-py3.8.egg
.
File metadata
- Download URL: tsne_torch-1.0.0-py3.8.egg
- Upload date:
- Size: 8.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c05dd82ce9e623ba5604bd6b5f824032f53212ec8b241cc678f7c46d7cf56d26 |
|
MD5 | 0f4211ee60877194c31550e7e0f8a2ae |
|
BLAKE2b-256 | 874836adcb38fe1f94f90a5a6807152366ce84bffca5a7c41bb0258a4df10f3f |