Skip to main content

CUDA Implementation of T-SNE with Python bindings

Project description

tsnecuda provides an optimized CUDA implementation of the T-SNE algorithm by L Van der Maaten. tsnecuda is able to compute the T-SNE of large numbers of points up to 1200 times faster than other leading libraries, and provides simple python bindings with a SKLearn style interface:

#!/usr/bin/env python

from tsnecuda import TSNE
embeddedX = TSNE(n_components=2).fit_transform(X)

For more information, check out the repository at https://github.com/rmrao/tsne-cuda.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page