A python package for time series forecasting with scikit-learn estimators.
Project description
tspiral
A python package for time series forecasting with scikit-learn estimators.
tspiral is not a library that works as a wrapper for other tools and methods for time series forecasting. tspiral directly provides scikit-learn estimators for time series forecasting. It leverages the benefit of using scikit-learn syntax and components to easily access the open source ecosystem built on top of the scikit-learn community. It easily maps a complex time series forecasting problems into a tabular supervised regression task, solving it with a standard approach.
Overview
tspiral provides 4 optimized forecasting techniques:
- Recursive Forecasting
Lagged target features are combined with exogenous regressors (if provided) and lagged exogenous features (if specified). A scikit-learn compatible regressor is fitted on the whole merged data. The fitted estimator is called iteratively to predict multiple steps ahead.
Which in a compact way we can summarize in:
- Direct Forecasting
A scikit-learn compatible regressor is fitted on the lagged data for each time step to forecast.
- Stacking Forecasting
Multiple recursive time series forecasters are fitted and combined on the final portion of the training data with a meta-learner.
- Rectified Forecasting
Multiple recursive time series forecasters are fitted on different sliding window training bunches. Forecasts are adjusted and combined fitting a meta-learner for each forecasting step.
Multivariate time series forecasting is natively supported for all the forecasting methods available.
Installation
pip install --upgrade tspiral
The module depends only on NumPy and Scikit-Learn (>=0.24.2). Python 3.6 or above is supported.
Usage
- Recursive Forecasting
import numpy as np
from sklearn.linear_model import Ridge
from tsprial.forecasting import ForecastingCascade
timesteps = 400
e = np.random.normal(0,1, (timesteps,))
y = 2*np.sin(np.arange(timesteps)*(2*np.pi/24))+e
model = ForecastingCascade(
Ridge(),
lags=range(1,24+1),
use_exog=False,
accept_nan=False
)
model.fit(None, y)
forecasts = model.predict(np.arange(24*3))
- Direct Forecasting
import numpy as np
from sklearn.linear_model import Ridge
from tsprial.forecasting import ForecastingChain
timesteps = 400
e = np.random.normal(0,1, (timesteps,))
y = 2*np.sin(np.arange(timesteps)*(2*np.pi/24))+e
model = ForecastingChain(
Ridge(),
n_estimators=24,
lags=range(1,24+1),
use_exog=False,
accept_nan=False
)
model.fit(None, y)
forecasts = model.predict(np.arange(24*3))
- Stacking Forecasting
import numpy as np
from sklearn.linear_model import Ridge
from sklearn.tree import DecisionTreeRegressor
from tsprial.forecasting import ForecastingStacked
timesteps = 400
e = np.random.normal(0,1, (timesteps,))
y = 2*np.sin(np.arange(timesteps)*(2*np.pi/24))+e
model = ForecastingStacked(
[Ridge(), DecisionTreeRegressor()],
test_size=24*3,
lags=range(1,24+1),
use_exog=False
)
model.fit(None, y)
forecasts = model.predict(np.arange(24*3))
- Rectified Forecasting
import numpy as np
from sklearn.linear_model import Ridge
from tsprial.forecasting import ForecastingRectified
timesteps = 400
e = np.random.normal(0,1, (timesteps,))
y = 2*np.sin(np.arange(timesteps)*(2*np.pi/24))+e
model = ForecastingRectified(
Ridge(),
n_estimators=200,
test_size=24*3,
lags=range(1,24+1),
use_exog=False
)
model.fit(None, y)
forecasts = model.predict(np.arange(24*3))
More examples in the notebooks folder.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file tspiral-0.1.3.tar.gz
.
File metadata
- Download URL: tspiral-0.1.3.tar.gz
- Upload date:
- Size: 10.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6775628287bfaa18c0269a32f109dc0cfe5043ec6b5c324962a14fc9dd140705 |
|
MD5 | f714b554d9d862346eaff7e38ccdfa5a |
|
BLAKE2b-256 | d2c1bad4dc91cb59a4a0df98d4f9c800ad68ed46eb5402392aff1a07b5ebf19f |
File details
Details for the file tspiral-0.1.3-py3-none-any.whl
.
File metadata
- Download URL: tspiral-0.1.3-py3-none-any.whl
- Upload date:
- Size: 12.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | afca2e1bb6321b5bdf3a39baa2ceca0b3663160e9d65386d5e317d67953f4de2 |
|
MD5 | dc7f49d0e0f59ffc6c4c5f49e0eab05f |
|
BLAKE2b-256 | 741e5f82c891e7be3efbe95534bec51994fa3484829667b48f7b573b75805b11 |