Skip to main content

A library and command-line tool for working with Boolean expressions

Project description

tt's PyPI page tt runs on Python 3.6, 3.7, and 3.8 tt documentation site Linux build on Travis CI Windows build on AppVeyor

Synopsis

tt (truth table) is a library aiming to provide a Pythonic toolkit for working with Boolean expressions and truth tables. Please see the project site for guides and documentation, or check out bool.tools for a simple web application powered by this library.

Installation

tt is tested on CPython 3.6, 3.7, and 3.8. You can get the latest release from PyPI with:

pip install ttable

Features

Parse expressions:

>>> from tt import BooleanExpression
>>> b = BooleanExpression('A impl not (B nand C)')
>>> b.tokens
['A', 'impl', 'not', '(', 'B', 'nand', 'C', ')']
>>> print(b.tree)
impl
`----A
`----not
     `----nand
          `----B
          `----C

Evaluate expressions:

>>> b = BooleanExpression('(A /\ B) -> (C \/ D)')
>>> b.evaluate(A=1, B=1, C=0, D=0)
False
>>> b.evaluate(A=1, B=1, C=1, D=0)
True

Interact with expression structure:

>>> b = BooleanExpression('(A and ~B and C) or (~C and D) or E')
>>> b.is_dnf
True
>>> for clause in b.iter_dnf_clauses():
...     print(clause)
...
A and ~B and C
~C and D
E

Apply expression transformations:

>>> from tt import to_primitives, to_cnf
>>> to_primitives('A xor B')
<BooleanExpression "(A and not B) or (not A and B)">
>>> to_cnf('(A nand B) impl (C or D)')
<BooleanExpression "(A or C or D) and (B or C or D)">

Or create your own:

>>> from tt import tt_compose, apply_de_morgans, coalesce_negations, twice
>>> b = BooleanExpression('not (not (A or B))')
>>> f = tt_compose(apply_de_morgans, twice)
>>> f(b)
<BooleanExpression "not not A or not not B">
>>> g = tt_compose(f, coalesce_negations)
>>> g(b)
<BooleanExpression "A or B">

Exhaust SAT solutions:

>>> b = BooleanExpression('~(A or B) xor C')
>>> for sat_solution in b.sat_all():
...     print(sat_solution)
...
A=0, B=1, C=1
A=1, B=0, C=1
A=1, B=1, C=1
A=0, B=0, C=0

Find just a few:

>>> with b.constrain(A=1):
...     for sat_solution in b.sat_all():
...         print(sat_solution)
...
A=1, B=0, C=1
A=1, B=1, C=1

Or just one:

>>> b.sat_one()
<BooleanValues [A=0, B=1, C=1]>

Build truth tables:

>>> from tt import TruthTable
>>> t = TruthTable('A iff B')
>>> print(t)
+---+---+---+
| A | B |   |
+---+---+---+
| 0 | 0 | 1 |
+---+---+---+
| 0 | 1 | 0 |
+---+---+---+
| 1 | 0 | 0 |
+---+---+---+
| 1 | 1 | 1 |
+---+---+---+

And much more!

License

tt uses the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for ttable, version 0.6.4
Filename, size File type Python version Upload date Hashes
Filename, size ttable-0.6.4-cp36-cp36m-win_amd64.whl (81.9 kB) File type Wheel Python version cp36 Upload date Hashes View
Filename, size ttable-0.6.4-cp37-cp37m-win_amd64.whl (81.9 kB) File type Wheel Python version cp37 Upload date Hashes View
Filename, size ttable-0.6.4-cp38-cp38-win_amd64.whl (81.9 kB) File type Wheel Python version cp38 Upload date Hashes View
Filename, size ttable-0.6.4.tar.gz (122.3 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page