Skip to main content

Boost pretrained models with test time augmentation selection

Project description

TTABoost - Boost Your pre-trained Model With Test Time Augmentation Selection

Test time augmentation selection for image detection and classification.


pip install ttabooster

Usage example

from ttabooster.TTABoost import TTABooster

model = load_model('pretrained-model.h5')  # Load any keras model
x_test, y_test = ...  # Load your validation set

    RandomSizedCrop((28, 28), 32, 32, w2h_ratio=1.0, interpolation=1, always_apply=False, p=1.0), 
    # Add your augmentations...

booster = TTABooster(model, batch_size=100, augmentations=AUGMENTATIONS_TEST)
booster.benchmark_results(x_test, y_test)

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for ttabooster, version 0.12
Filename, size File type Python version Upload date Hashes
Filename, size ttabooster-0.12.tar.gz (7.9 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page