Boost pretrained models with test time augmentation selection
Project description
TTABoost - Boost Your pre-trained Model With Test Time Augmentation Selection
Test time augmentation selection for image detection and classification.
Install
pip install ttabooster
Usage example
from ttabooster.TTABoost import TTABooster
model = load_model('pretrained-model.h5') # Load any keras model
x_test, y_test = ... # Load your validation set
AUGMENTATIONS_TEST = Compose([
RandomSizedCrop((28, 28), 32, 32, w2h_ratio=1.0, interpolation=1, always_apply=False, p=1.0),
# Add your augmentations...
])
booster = TTABooster(model, batch_size=100, augmentations=AUGMENTATIONS_TEST)
booster.benchmark_results(x_test, y_test)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
ttabooster-0.14.tar.gz
(7.9 kB
view details)
File details
Details for the file ttabooster-0.14.tar.gz.
File metadata
- Download URL: ttabooster-0.14.tar.gz
- Upload date:
- Size: 7.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.6.8
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
9c9adba3abee1f97ff61aed92572734724e01c27cd73bd3e779d6d467d7992c6
|
|
| MD5 |
c151e97b0f72b03790dcef59a9fc9dac
|
|
| BLAKE2b-256 |
5847d572938702343445d3726daadb71916d64c66201aa52e067445e1755e5c5
|