Skip to main content

Test Time Augmentations

Project description

TTAugment

GitHub Python Contributions welcome Downloads

Perform Augmentation during Inference and aggregate the results of all the applied augmentation to create a final output

Installation

pip install ttAugment

Supported Augmentation

Library supports all color, blur and contrast transformation provided by imgaug along with custom Geometric Transformation.

  1. Mirror : Crop an image to crop_to_dimension and mirror pixels to match the size of window_dimension
  2. CropScale : Crop an image to crop_to_dimension and rescale the image to match the size of window_dimension
  3. NoAugment : Keep the input unchanged
  4. Crop : Crop an image to crop_to_dimension
  5. Rot : Rotate an Image
  6. FlipHorizontal
  7. FlipVertical

Usage

How to use when test image is much larger than what the model requires, Don't worry the library has it covered, it will generate fragments according to the specified dimension, so the inference can be performed while applying augmentation.

  • window_size: Break the image into smaller images of said size
  • output_dimension: It must be greater the input image in order for the fragments to be restored back on the image.
import numpy as np
from tt_augment.augment import generate_seg_augmenters

transformation_to_apply = [
  {"name": "Mirror", "crop_to_dimension": (256, 256)},
  {"name": "CropScale", "crop_to_dimension": (256, 256)},
]

for i in range(0, 10):
  image = np.random.rand(512, 512, 3) * 255
  image = np.expand_dims(image, 0)

  # Load augmentation object for the image, this includes to break the image in smaller fragments.
  tta = generate_seg_augmenters(
    image=image,
    window_size=(384, 384),
    output_dimension=(1, 512, 512, 3),
    transformation_to_apply=transformation_to_apply,
  )

  # Iterate over transformation_to_apply
  for iterator, transformation in enumerate(tta):
    # Iterate over individual fragments
    for augmented_fragment in transformation.transform_fragment():
      #     ---> transformed_fragment.shape = (1, 384, 384, 3) 
      # Inference steps for augmented fragment
      # 1. perform image normalization
      #     ---> normalised_image = image_normalization(augmented_fragment)
      # 2. perform model prediction
      #     ---> prediction = model.predict(normalised_image)
      # 3. convert prediction to numpy with shape [batch, h, w, channel]
      # 4. place the prediction fragment on its position in the original image
      #     ---> transformation.restore_fragment(prediction)

      transformation.restore_fragment(augmented_fragment)

  # Aggregate the result for the input image over all applied augmentations
  tta.merge()

  output = tta.tta_output()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ttAugment-0.4.1.tar.gz (7.4 kB view details)

Uploaded Source

Built Distribution

ttAugment-0.4.1-py3-none-any.whl (8.6 kB view details)

Uploaded Python 3

File details

Details for the file ttAugment-0.4.1.tar.gz.

File metadata

  • Download URL: ttAugment-0.4.1.tar.gz
  • Upload date:
  • Size: 7.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for ttAugment-0.4.1.tar.gz
Algorithm Hash digest
SHA256 e60436f57e33f044f1fa47234e225e76543662439c5393311a4cd33bde832205
MD5 040536cfd68328e5b76c97dde1210331
BLAKE2b-256 a92c08eb87a01f63e0cc73ac2ff4b7b069a06270edd4c9dc4f15ad4cac30c68b

See more details on using hashes here.

File details

Details for the file ttAugment-0.4.1-py3-none-any.whl.

File metadata

  • Download URL: ttAugment-0.4.1-py3-none-any.whl
  • Upload date:
  • Size: 8.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for ttAugment-0.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 7cb8d6e5d7d8864aee844f7fb942a32c9d77dcad1022a6eee3f6e80b0cee92c4
MD5 0e1e0d3a2aaf72d9fd0b4f5ed9854b5e
BLAKE2b-256 6f9986e715d7853da56ce6ef58c9eae082974720bb2760999030af0aaaab45bd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page