Skip to main content

Paper - Pytorch

Project description

Multi-Modality

TTL

Pytorch Implementation of the paper: "Learning to (Learn at Test Time): RNNs with Expressive Hidden States"

Install

$ pip install ttl-torch

Usage

import torch
from ttl_torch.ttl_linear import TTLinear


input_dim, output_dim = 10, 10  # Dimensions for the linear model
ttt_layer = TTLinear(input_dim, output_dim)

# Generate some example data
example_data = [
    torch.randn(1, input_dim, output_dim) for _ in range(5)
]

# Forward pass through the TTT layer
output_data = ttt_layer(example_data)

for i, output in enumerate(output_data):
    print(f"Output at step {i}: {output}")

License

MIT

Citation

@misc{sun2024learninglearntesttime,
    title={Learning to (Learn at Test Time): RNNs with Expressive Hidden States}, 
    author={Yu Sun and Xinhao Li and Karan Dalal and Jiarui Xu and Arjun Vikram and Genghan Zhang and Yann Dubois and Xinlei Chen and Xiaolong Wang and Sanmi Koyejo and Tatsunori Hashimoto and Carlos Guestrin},
    year={2024},
    eprint={2407.04620},
    archivePrefix={arXiv},
    primaryClass={cs.LG},
    url={https://arxiv.org/abs/2407.04620}, 
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ttl_torch-0.0.4.tar.gz (4.8 kB view details)

Uploaded Source

Built Distribution

ttl_torch-0.0.4-py3-none-any.whl (5.6 kB view details)

Uploaded Python 3

File details

Details for the file ttl_torch-0.0.4.tar.gz.

File metadata

  • Download URL: ttl_torch-0.0.4.tar.gz
  • Upload date:
  • Size: 4.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.4 Darwin/22.6.0

File hashes

Hashes for ttl_torch-0.0.4.tar.gz
Algorithm Hash digest
SHA256 5e81f4187d9514efb4b78289c688988461dd8da793ca01ef3422abc9c12a366b
MD5 4b7e4d2199e08a20b7ef2ac700c9ad43
BLAKE2b-256 77bd219c1dfbc0ccacb13b1ea8d873169b3c16db87d2a91478f778895d9f2758

See more details on using hashes here.

File details

Details for the file ttl_torch-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: ttl_torch-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 5.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.4 Darwin/22.6.0

File hashes

Hashes for ttl_torch-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 b20a8a18131b9f05ce64a8ddd6ee68e65f1adbde5d0b19b14e3deabfa53c5d10
MD5 45cf530d0c7e4227f6d15c04eae750ad
BLAKE2b-256 c5418cbc155a1b3f15c7c267c0016647635278dab89d657c62320c2edb1f61e2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page