Skip to main content

Large graphs analysis and drawing

Project description

Module description

Graphs play an important role in many research areas, such as biology, microelectronics, social sciences, data mining, and computer science. Tulip (https://tulip.labri.fr) [1] [2] [3] is an Information Visualization framework dedicated to the analysis and visualization of such relational data. Written in C++ the framework enables the development of algorithms, visual encodings, interaction techniques, data models, and domain-specific visualizations.

The Tulip core library is available to the Python community through the Tulip-Python bindings [4]. The bindings have been developed using the SIP tool [5] from Riverbank Computed Limited, allowing to easily create quality Python bindings for any C/C++ library. The main features provided by the bindings are the following ones:

  • Creation and manipulation of graphs : Tulip provides an efficient graph data structure for storing large and complex networks. It is also one of the few that offer the possibility to efficiently define and navigate graph hierarchies or cluster trees (nested subgraphs).

  • Storage of data on graph elements : Tulip allows to associate different kind of serializable data (boolean, integer, float, string, …) and visual attributes (layout, color, size, …) to graph elements. All these data can be easily accessed from the Tulip graph data structure facilitating the development of algorithms.

  • Application of algorithms of different types on graph : Tulip has been designed to be easily extensible and provides a variety of graph algorithms (layout, metric, clustering, …) implemented as C++ plugins. All these algorithms can be called from Python. As Tulip is dedicated to graph visualization, it is provided with numerous state of the art graph layout algorithms but also a bridge to the Open Graph Drawing Framework (http://www.ogdf.net) [6]

References

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tulip_python-6.0.0-cp313-cp313-win_amd64.whl (15.9 MB view details)

Uploaded CPython 3.13 Windows x86-64

tulip_python-6.0.0-cp313-cp313-manylinux_2_28_x86_64.whl (11.1 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.28+ x86-64

tulip_python-6.0.0-cp313-cp313-macosx_12_0_universal2.whl (16.1 MB view details)

Uploaded CPython 3.13 macOS 12.0+ universal2 (ARM64, x86-64)

tulip_python-6.0.0-cp313-cp313-macosx_10_15_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.13 macOS 10.15+ x86-64

tulip_python-6.0.0-cp312-cp312-win_amd64.whl (15.9 MB view details)

Uploaded CPython 3.12 Windows x86-64

tulip_python-6.0.0-cp312-cp312-manylinux_2_28_x86_64.whl (11.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

tulip_python-6.0.0-cp312-cp312-macosx_12_0_universal2.whl (16.1 MB view details)

Uploaded CPython 3.12 macOS 12.0+ universal2 (ARM64, x86-64)

tulip_python-6.0.0-cp312-cp312-macosx_10_15_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

tulip_python-6.0.0-cp311-cp311-win_amd64.whl (15.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

tulip_python-6.0.0-cp311-cp311-manylinux_2_28_x86_64.whl (11.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

tulip_python-6.0.0-cp311-cp311-macosx_12_0_universal2.whl (16.1 MB view details)

Uploaded CPython 3.11 macOS 12.0+ universal2 (ARM64, x86-64)

tulip_python-6.0.0-cp311-cp311-macosx_10_15_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

tulip_python-6.0.0-cp310-cp310-win_amd64.whl (15.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

tulip_python-6.0.0-cp310-cp310-manylinux_2_28_x86_64.whl (11.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

tulip_python-6.0.0-cp310-cp310-macosx_12_0_universal2.whl (16.1 MB view details)

Uploaded CPython 3.10 macOS 12.0+ universal2 (ARM64, x86-64)

tulip_python-6.0.0-cp310-cp310-macosx_10_15_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

tulip_python-6.0.0-cp39-cp39-win_amd64.whl (15.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

tulip_python-6.0.0-cp39-cp39-macosx_12_0_universal2.whl (16.1 MB view details)

Uploaded CPython 3.9 macOS 12.0+ universal2 (ARM64, x86-64)

tulip_python-6.0.0-cp39-cp39-macosx_10_15_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

File details

Details for the file tulip_python-6.0.0-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for tulip_python-6.0.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 7f08ec5d163ccd85d9e373140d0a597dd9c070a09d2d693f6f6da781c1a4be08
MD5 74b3499815e81fabd748c225bf997fc3
BLAKE2b-256 484bd580a5d4cfb2498753691c32758e2efe9a64c8a397acad22bc47d75c3cc5

See more details on using hashes here.

File details

Details for the file tulip_python-6.0.0-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-6.0.0-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 53e8050481f08200e4740b30e10670f62d8ff4a7ed274d4f41a6318a091a594f
MD5 e5fa2f3cc069085bc25d7cbf20db8177
BLAKE2b-256 fd82ba56129c4774ea5f8dd5938f07ae9e8134120f5657536ed522d3738926a9

See more details on using hashes here.

File details

Details for the file tulip_python-6.0.0-cp313-cp313-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for tulip_python-6.0.0-cp313-cp313-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 96c0ae28cae5334b937c4dea14a2493c7a97285623e826e2ddd8d49c1bb64821
MD5 5471262bdbe4a8af171a08564b68170f
BLAKE2b-256 7037894c7b50c51a29696a1b152a27faf77fb3c5eca9b93a851d663092dbabac

See more details on using hashes here.

File details

Details for the file tulip_python-6.0.0-cp313-cp313-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-6.0.0-cp313-cp313-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 828c4b4f764c12fb14997631e8e2a46f6b1f0ae90c36e56281b1ed329e079892
MD5 523f688676f72b012276e8a51b107638
BLAKE2b-256 78d054f33414d1a572e881e165087d51be5b307dac7a88e6f706c7daeb825656

See more details on using hashes here.

File details

Details for the file tulip_python-6.0.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for tulip_python-6.0.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f8c21d5245f6d0c668cc013808050c5c9657f119593b1ef73dda1c046f9ecf2a
MD5 fab1ca7cdd8328dc0cf30933fb61cb08
BLAKE2b-256 3dd4979b3656375040fb1cf05429d2784f88a64e05505a6783b65cdff3151397

See more details on using hashes here.

File details

Details for the file tulip_python-6.0.0-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-6.0.0-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 15d4524934b9896005efc41fe38cb98147ad38205fc16390206c00d4078055ca
MD5 6cd9b009c4f9a7ef8b625e92dc9ffd39
BLAKE2b-256 ddbc44cb192f22e76612a343ba3fc885d75fab0db3fb252f08d594e5cec35e0f

See more details on using hashes here.

File details

Details for the file tulip_python-6.0.0-cp312-cp312-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for tulip_python-6.0.0-cp312-cp312-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 33fc52e8a7bfc3cec927fdb94e80f71cb335e1034e075451503f2ab73d0cf522
MD5 65d2011c11107f9d83f3f1b2ba62b77c
BLAKE2b-256 7ae33ec2ccf93f644074c037dce45cc6b7ffc052373107399894645a04a36132

See more details on using hashes here.

File details

Details for the file tulip_python-6.0.0-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-6.0.0-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 41bf4822951dfaa383d611bb07a6c076b86411cf5f2b77b89695f68b335fe6c3
MD5 7ce2898e525a6810da4b47036f43cd06
BLAKE2b-256 2d1a9b68fae72fd2bf4fdceb7204c1b98c9ad1343b42ae0ab5d25775f0066322

See more details on using hashes here.

File details

Details for the file tulip_python-6.0.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tulip_python-6.0.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 64af51771f684217ac38cf9d89ebbd46455b389ea7cd03a7ca6348c940df274b
MD5 5fd71e594a08fc0cec93767f31a0a451
BLAKE2b-256 16a5665d3426577a7e049260656f5c2c8402c36c6e26eba8c3f86287353b7908

See more details on using hashes here.

File details

Details for the file tulip_python-6.0.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-6.0.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e4a09d7fa1d70fb66a71d423024118100b8310fa24b26407ee02b440aecfc64d
MD5 6bc177b400facfe5189b05093ed4c5e6
BLAKE2b-256 2ff7112040a29e7e6444e9379fbbdfd56478288cbc1b3de749d56eb5f9db174e

See more details on using hashes here.

File details

Details for the file tulip_python-6.0.0-cp311-cp311-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for tulip_python-6.0.0-cp311-cp311-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 ddcf80f6abc610bd8da3ff55d9ec172e05e815e5f58f532c1b3df8c0947be25f
MD5 0f6bb96f97ad821a0e0c1be780405b1a
BLAKE2b-256 80d9ef522ff9094db5380febcc6017804f09dd5959321125934d8261b1fdffa2

See more details on using hashes here.

File details

Details for the file tulip_python-6.0.0-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-6.0.0-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 43e28d4ea9a7b8da4fb161dfaa9146dadd86bfd7a5f657bfa211928c5b3193bc
MD5 4089b85111e66623775cff03c00ff3c5
BLAKE2b-256 a24db0b2d29427217112e244226b8897a0005404016ca20bf155f7a290fcf0f3

See more details on using hashes here.

File details

Details for the file tulip_python-6.0.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tulip_python-6.0.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 63baabe8dd9e47806262dbd0b2b26ff86681e69ca23f643f2c0d91fb68ebd3c2
MD5 f5ba871c74877303fd1aa38ea67ef40f
BLAKE2b-256 a4c96729a2792adbce49fa92edada715b23cc69fc198ca5602b80a340a05f1c8

See more details on using hashes here.

File details

Details for the file tulip_python-6.0.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-6.0.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 2ae5059a4bb47f529e8f28dda160accca4f613656c32173be393dcf9a840c343
MD5 d6947ba22379ca596701f8ef8b2d3e40
BLAKE2b-256 72e1da6e502c5a0f672a252f56c82d89525bcf011ca89b170d92fbf9dd040507

See more details on using hashes here.

File details

Details for the file tulip_python-6.0.0-cp310-cp310-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for tulip_python-6.0.0-cp310-cp310-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 795f9e3d83dc9a810f82a0f8abf5568870cb710985b7db205dba41ca06863558
MD5 5e4618f9f779fc53594f9d66da76caf8
BLAKE2b-256 e317d3b16f06507c24f80ca7069fb8f7b21fe005a77583e2776993205194529c

See more details on using hashes here.

File details

Details for the file tulip_python-6.0.0-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-6.0.0-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e710b4e29a84e33b9b68de1176a8cda5d8005aa88c57c7d569167e0a21c3a11a
MD5 9ca090f37444f83d07c486b8c85fcd8d
BLAKE2b-256 fbb4728324be64f27a57522c90805c9fe5cfafac8081b6a2d1e524cac7785620

See more details on using hashes here.

File details

Details for the file tulip_python-6.0.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tulip_python-6.0.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 fc24a5e44e200e565e14c584cadd8934c9a8d38a7dc2f9e43d02528a49b9d343
MD5 870d444e2bd86bca8fb9e069b66cd500
BLAKE2b-256 bbd7dfbdc6d1db2540867f3ceb0d048bc589e5a8363d436f1f8ffc3130a43353

See more details on using hashes here.

File details

Details for the file tulip_python-6.0.0-cp39-cp39-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for tulip_python-6.0.0-cp39-cp39-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 ea848993d5ebf211e278d635896750d06c9bed60a7524541146d98ac9b689a8d
MD5 7488d0c6f6865798c37656e3d5f364a6
BLAKE2b-256 cd78ba7bc1133d391e22fcd638ee6e8003b0e413d5ad200fbc71a2a5858696f6

See more details on using hashes here.

File details

Details for the file tulip_python-6.0.0-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-6.0.0-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 acb714eb27c256d9fe0bd812d30edab44fd3e9d9fc4af2ae6a91d6ea1c578d36
MD5 36993a23a2666c10b7eec3e647b5c4c7
BLAKE2b-256 c75a29fe99c47a83433f86042c74ce4c5615cbd4739ee8c06727fa1533321a8a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page