Skip to main content

Large graphs analysis and drawing

Project description

Module description

Graphs play an important role in many research areas, such as biology, microelectronics, social sciences, data mining, and computer science. Tulip (http://tulip.labri.fr) [1] is an Information Visualization framework dedicated to the analysis and visualization of such relational data. Written in C++ the framework enables the development of algorithms, visual encodings, interaction techniques, data models, and domain-specific visualizations.

The Tulip core library is available to the Python community through the Tulip-Python bindings [2]. The bindings have been developed using the SIP tool [3] from Riverbank Computed Limited, allowing to easily create quality Python bindings for any C/C++ library. The main features provided by the bindings are the following ones:

  • Creation and manipulation of graphs : Tulip provides an efficient graph data structure for storing large and complex networks. It is also one of the few that offer the possibility to efficiently define and navigate graph hierarchies or cluster trees (nested sub-graphs).

  • Storage of data on graph elements : Tulip allows to associate different kind of serializable data (boolean, integer, float, string, …) and visual attributes (layout, color, size, …) to graph elements. All these data can be easily accessed from the Tulip graph data structure facilitating the development of algorithms.

  • Application of algorithms of different types on graph : Tulip has been designed to be easily extensible and provides a variety of graph algorithms (layout, metric, clustering, …) implemented as C++ plugins. All these algorithms can be called from Python. As Tulip is dedicated to graph visualization, it is provided with numerous state of the art graph layout algorithms but also a bridge to the Open Graph Drawing Framework (http://www.ogdf.net) [4]

Release notes

Some informations regarding the Tulip-Python releases pushed on the Python Packaging Index:

  • 4.10.0: based on Tulip 4.10.0 released on 08/12/2016

    • some new methods added and API improvements (see updated documentation)

    • add a new section in the documentation detailing the C++ plugins bundled with Tulip that can be called from Python

    • improvements for working with Tulip color scales (see updated documentation)

  • 4.9.0 : based on Tulip 4.9.0 released on 08/07/2016

    • add a mechanism to ease the creation of graph properties through type inference (see updated documentation)

    • simplify the declaration of file parameters for Tulip Python plugins (see updated documentation)

    • a few bugs fixes

  • 4.8.1 : based on Tulip 4.8.1 released on 16/02/2016

    • add new convenient methods for getting / setting multiple properties values of nodes and edges, trough the use of a dictionnary, in the tlp.Graph class (see updated documentation)

    • some bugs fixes

  • 4.8.0.post1 :

    • Fix crash on MacOS when calling OGDF layout algorithms

    • minor fixes

  • 4.8.0 : Initial release based on Tulip 4.8

Example

The following script imports the dependency graph from the locally installed pip packages, draws it using a force directed layout algorithm and serializes the resulting graph to a file through the TLP graph format. The imported graph can then be visualized through the Tulip software or the use of the dedicated tulipgui module, enabling to create the OpenGL visualizations available in Tulip from Python.

import pip
import re

from tulip import *

# create a new empty graph
graph = tlp.newGraph()

# dictionnary mapping package name to graph node
packageNode = {}

def addPackageNode(package):
  if not package in packageNode:
    n = graph.addNode()
    packageNode[package] = n
    # set node label for use with Tulip visualizations components
    graph['viewLabel'][n] = package

# iterate over locally installed pip packages
for d in pip.get_installed_distributions():
  # add a node associated to the package
  addPackageNode(d.key)

# iterate over locally installed pip packages
for d in pip.get_installed_distributions():
  # iterate over package requirements
  for r in d.requires():
    # process requirement name to get its pip package name :
    # switch to lower case and remove version infos if any
    s = str(r).lower()
    match = re.search('|'.join(map(re.escape, '<=>;!')), s)
    if match:
      s = s[:match.start()]
    # add dependency package node if it does not exist yet
    addPackageNode(s)
    # add an edge between the pip package and its dependency in the graph
    graph.addEdge(packageNode[d.key], packageNode[s])

# apply a force directed layout algorithm on the graph then a connected component packing algorithm.
# algorithms are called with their default parameters.
# resulting layout will be stored in the defaut graph layout property named 'viewLayout'
graph.applyLayoutAlgorithm('Fast Multipole Multilevel Embedder (OGDF)')
graph.applyLayoutAlgorithm('Connected Component Packing (Polyomino)')

tlp.saveGraph(graph, 'pip_deps.tlp')

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tulip_python-4.10.0-cp36-cp36m-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

tulip_python-4.10.0-cp36-cp36m-win32.whl (20.2 MB view details)

Uploaded CPython 3.6m Windows x86

tulip_python-4.10.0-cp36-cp36m-manylinux1_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.6m

tulip_python-4.10.0-cp36-cp36m-manylinux1_i686.whl (9.7 MB view details)

Uploaded CPython 3.6m

tulip_python-4.10.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (15.3 MB view details)

Uploaded CPython 3.6m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

tulip_python-4.10.0-cp35-cp35m-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.5m Windows x86-64

tulip_python-4.10.0-cp35-cp35m-win32.whl (20.2 MB view details)

Uploaded CPython 3.5m Windows x86

tulip_python-4.10.0-cp35-cp35m-manylinux1_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.5m

tulip_python-4.10.0-cp35-cp35m-manylinux1_i686.whl (9.6 MB view details)

Uploaded CPython 3.5m

tulip_python-4.10.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (15.3 MB view details)

Uploaded CPython 3.5m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

tulip_python-4.10.0-cp34-cp34m-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.4m Windows x86-64

tulip_python-4.10.0-cp34-cp34m-win32.whl (20.2 MB view details)

Uploaded CPython 3.4m Windows x86

tulip_python-4.10.0-cp34-cp34m-manylinux1_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.4m

tulip_python-4.10.0-cp34-cp34m-manylinux1_i686.whl (9.6 MB view details)

Uploaded CPython 3.4m

tulip_python-4.10.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (15.3 MB view details)

Uploaded CPython 3.4m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

tulip_python-4.10.0-cp33-cp33m-win_amd64.whl (21.6 MB view details)

Uploaded CPython 3.3m Windows x86-64

tulip_python-4.10.0-cp33-cp33m-win32.whl (20.2 MB view details)

Uploaded CPython 3.3m Windows x86

tulip_python-4.10.0-cp33-cp33m-manylinux1_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.3m

tulip_python-4.10.0-cp33-cp33m-manylinux1_i686.whl (9.6 MB view details)

Uploaded CPython 3.3m

tulip_python-4.10.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (15.3 MB view details)

Uploaded CPython 3.3m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

tulip_python-4.10.0-cp27-cp27mu-manylinux1_x86_64.whl (9.8 MB view details)

Uploaded CPython 2.7mu

tulip_python-4.10.0-cp27-cp27mu-manylinux1_i686.whl (9.6 MB view details)

Uploaded CPython 2.7mu

tulip_python-4.10.0-cp27-cp27m-win_amd64.whl (21.6 MB view details)

Uploaded CPython 2.7m Windows x86-64

tulip_python-4.10.0-cp27-cp27m-win32.whl (20.2 MB view details)

Uploaded CPython 2.7m Windows x86

tulip_python-4.10.0-cp27-cp27m-manylinux1_x86_64.whl (9.8 MB view details)

Uploaded CPython 2.7m

tulip_python-4.10.0-cp27-cp27m-manylinux1_i686.whl (9.6 MB view details)

Uploaded CPython 2.7m

tulip_python-4.10.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (15.3 MB view details)

Uploaded CPython 2.7m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

File details

Details for the file tulip_python-4.10.0-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tulip_python-4.10.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 b846d4c3827e696ab5db9c7a74818f5056262d7705e17e1a6bb51b74b359d01b
MD5 af8881917e7b53c8b4c0efe2cd85acf6
BLAKE2b-256 8f96c19c7fc230f93f42ead7283a852a63298990f47d8f3055b4bec40a0c872b

See more details on using hashes here.

File details

Details for the file tulip_python-4.10.0-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for tulip_python-4.10.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 effbe9d5e5f45bc5cb03d25bdd36d91c6af8d204a2fed1dcdbfc7c58ed05dd1f
MD5 154d49834cdfc9fc9cebc7523094ce92
BLAKE2b-256 a61ce1ccc7fad475f3d36713150034f70542d6de4c2c7d0c8378158e26fe2b40

See more details on using hashes here.

File details

Details for the file tulip_python-4.10.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-4.10.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b3f633bdb91dbce346a58731b8ce4aebc9aaf04b277dd693275de038db1ddaa8
MD5 4b0a56752978a34f3155255ab0b078e9
BLAKE2b-256 6dbfeac89c7b5e69674e40d39cf59ef121e6d9f806bce171104c61f254e72020

See more details on using hashes here.

File details

Details for the file tulip_python-4.10.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for tulip_python-4.10.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 b27b9f6fbc52c30a5730c7a2d2f2b04316264bd5ead286e6a349c7f234c2fbe6
MD5 a93713e0f384955d549a23049cd2e601
BLAKE2b-256 e3c1f2c75c6c6905b54159390b475a8ee8bbb0b2fc7da61054e46d5d02522d18

See more details on using hashes here.

File details

Details for the file tulip_python-4.10.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-4.10.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 ec869687106cf270097c3522bf2e4839f1ee7fd1270e4cf6a3b346716b045f29
MD5 d5dd1fbb2fd440fb14a3d7c24dda3220
BLAKE2b-256 97118953d68c3d0c85d0977172afa68d6dee0dafcfe8c3ba4c94ff72647fb81c

See more details on using hashes here.

File details

Details for the file tulip_python-4.10.0-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for tulip_python-4.10.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 a65049b06e3a2b6f54b1b561a08ab30b03a279aa92d427d9d1c4cef3bb3d094b
MD5 b5e39e2e2f8551f4b801f2b4519b5794
BLAKE2b-256 e2069089635a7d9aaee17d035817cd6640555b8b0ce49be2cd9eba6baf07a8b0

See more details on using hashes here.

File details

Details for the file tulip_python-4.10.0-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for tulip_python-4.10.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 ca5a253de15ddf3287fa53837c9616e4c85146927d9b343f4ad8187e62a38066
MD5 a0e1125cb74c9b5b330da2e256cfa4c1
BLAKE2b-256 e2d69d13c993403d2d39d0b64cad101d1636238fb767dfdd94fd62fe4a727851

See more details on using hashes here.

File details

Details for the file tulip_python-4.10.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-4.10.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e15a0612f40db2dc02445ff8028e2890d7c5227b54a16871123c354deeffc93f
MD5 fd86debbe4b72498103f4001337c18a2
BLAKE2b-256 51eb86985ec870f4b65272d0621b14f0c3405db26eb296811e28128fd8ef3adc

See more details on using hashes here.

File details

Details for the file tulip_python-4.10.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for tulip_python-4.10.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 4cd74eeb2bf4b9f9261c6f597d9fff413d18c59e618f40cd5a1c433c9bf859d2
MD5 391b52f7213771ae16c7f489e687efc8
BLAKE2b-256 076d1ec2c1d495967ad61228138eafe40f4e9c2ae745f5aa89b89b4ec981b85a

See more details on using hashes here.

File details

Details for the file tulip_python-4.10.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-4.10.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 d08b605e52ff59493e8c58b8018038c050f73ee2f44211cab19a54839144030d
MD5 105bf713040377389299f8809d829f2b
BLAKE2b-256 b5c0bc825868f6aa7163b995c84578cd4e4cb72fa1c629dba26c3461d08a99b5

See more details on using hashes here.

File details

Details for the file tulip_python-4.10.0-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for tulip_python-4.10.0-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 dc10597552219b767b0e4daaa755b03daac4aacbb795479929cfaed9ac079f74
MD5 6095f349397c78399a1b954fa6441c7e
BLAKE2b-256 a78f18c81c927f08a503ec5057ab02981f5498610f61f305b52ffbc97eac8646

See more details on using hashes here.

File details

Details for the file tulip_python-4.10.0-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for tulip_python-4.10.0-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 0183fec9d7bc211d8b791e202297d9574c15f637e4aa1882ef1145a94c48530a
MD5 ece3866fe8dc068fd7753ee91a69566f
BLAKE2b-256 b267407fec7021aaac9afa98b4a9d45db8690b19263d3098177f32f85596027a

See more details on using hashes here.

File details

Details for the file tulip_python-4.10.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-4.10.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 064de43097d018a25b9cf570b16212c4441cb34af4324134602e6d222be5a247
MD5 7080baf1e5c0a528b4947ae43d97e45f
BLAKE2b-256 17315a86326e73965742df323fc4828f56d0fdaa27369438e3014a76abf5a4d1

See more details on using hashes here.

File details

Details for the file tulip_python-4.10.0-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for tulip_python-4.10.0-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 e8c2946cc37ee8df90926802e696e87c42fba0f0520026deb07cca62009f12df
MD5 f28910e739b20328c4be5208eb607419
BLAKE2b-256 e545b60ff6eec0ba4f0dd94fb68d8d9e75be2a03d578bd1aa39daa943b4e7b23

See more details on using hashes here.

File details

Details for the file tulip_python-4.10.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-4.10.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 3d340102ea5728827f4ce12a1a6e0c912856a4f4f5df6d489ae3b68da21206fd
MD5 ab85e2b96449b5e70e397454788d56ce
BLAKE2b-256 42aba0f979d035497bfd8475e332b5d0898786bdc374668fdbeeb4012b8d7e41

See more details on using hashes here.

File details

Details for the file tulip_python-4.10.0-cp33-cp33m-win_amd64.whl.

File metadata

File hashes

Hashes for tulip_python-4.10.0-cp33-cp33m-win_amd64.whl
Algorithm Hash digest
SHA256 363c0e672a33eb840f34eee37a3146a9ce2da34bdf58c79e6705cd22352f9b23
MD5 01b53202b4456cf015404dcc839713bf
BLAKE2b-256 a311702ca3ac7edd4081d9610742eda0551725f71893b3eb701b47a90b36a92e

See more details on using hashes here.

File details

Details for the file tulip_python-4.10.0-cp33-cp33m-win32.whl.

File metadata

File hashes

Hashes for tulip_python-4.10.0-cp33-cp33m-win32.whl
Algorithm Hash digest
SHA256 aa59f9f43082eb936472e9aa8e5f61d7c13fb212714ed7f188490923457672af
MD5 38acb38428908bce78f10363e5c2894f
BLAKE2b-256 984701cf54bfc15b5d668d678f2829505eeaed693578daa040aa1220d2ff6d4f

See more details on using hashes here.

File details

Details for the file tulip_python-4.10.0-cp33-cp33m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-4.10.0-cp33-cp33m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9a65a24b60d47129684737a1165261a6d078ea1d4c1e789bde4e5cdb64b11ba5
MD5 2c2705d2a5d99f1bd443ca251561c733
BLAKE2b-256 e684d9b72a9a9d94d88ab34288c2bf5a3b9a891c65eef9594deb80cd59405f50

See more details on using hashes here.

File details

Details for the file tulip_python-4.10.0-cp33-cp33m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for tulip_python-4.10.0-cp33-cp33m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 622a1e8ccc2490711fa8a873c6e522f2f53847d47add496ea733e7fad8aef892
MD5 2bcc052ab637864b5674bb2abf5b348d
BLAKE2b-256 3ccbace6dffc5ac29923fb94526d5f4096d460b68edd1ba615927deb756e4138

See more details on using hashes here.

File details

Details for the file tulip_python-4.10.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-4.10.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 76b4130cd3dc9a79920fc07bf1a9badcdcf96d3746f7b3054ededf130211a1be
MD5 9279122a6e99c9b2979c2a0214c137ab
BLAKE2b-256 1493e0e929f38c3ec3024cd00c4b2140541e55dcea43a32d19b6824f708665e0

See more details on using hashes here.

File details

Details for the file tulip_python-4.10.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-4.10.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c582d0862138f841eda26c8f8eed91dbaf84a499246203bf4c28e79225e6081a
MD5 8791cc8965d442a92de620ee655c45c4
BLAKE2b-256 fc4a70a5969154a10b7b25ffb802d5b264d7d38da4e7eec9156f68124099bbd7

See more details on using hashes here.

File details

Details for the file tulip_python-4.10.0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for tulip_python-4.10.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 802d92baa6a45189e8b241d51ad3c1acebe6196df21945ba94e80ee760b94af5
MD5 9c3c26e172bcc9fc0f70e77dba9b38ba
BLAKE2b-256 2db19bbb1011ba380536ac5c4cc43b39c335b1238fee24db53a0e90dccda9f26

See more details on using hashes here.

File details

Details for the file tulip_python-4.10.0-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for tulip_python-4.10.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 f1be2d910cde7b35d40c51946369ffc306684e380046d2a5c91c81063520ddf9
MD5 94d4d4c04109d952f90f156f78f3b235
BLAKE2b-256 4bf4a71bed2af94264e0907f0b5d08d6a4452d68d1fe039e43e7dc198c8012ed

See more details on using hashes here.

File details

Details for the file tulip_python-4.10.0-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for tulip_python-4.10.0-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 102cf5222c0a28ee3c9080501d328f2d60e6a4231a455c84016b6259144a0452
MD5 2a2aa2e92835511ec2ebf91849944d21
BLAKE2b-256 fc28aa26f94f18efe76da2b37f37317a0d224ac4f11a6025e9aebe8a55b3e21f

See more details on using hashes here.

File details

Details for the file tulip_python-4.10.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-4.10.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 08fae34cc5498c3990c06320114d02a0825499e465f3991cd4b950ef3346543b
MD5 679aab256cc2a4b4e3daf8ea7acd3812
BLAKE2b-256 b1a7364f6292ba3fd08f490c8d5363ce9607e987a4266d30504fccd498ad5c19

See more details on using hashes here.

File details

Details for the file tulip_python-4.10.0-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for tulip_python-4.10.0-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9a8489d4f2a6dfcb0f2bea6d4fd6c97ac294c6ce27482eca469f85ec9f333171
MD5 1c03fc975e78e89b1ea95af0a4ab2d22
BLAKE2b-256 4ce3473d597a8d18290748c3e2cb25cc17ccbdb0cf19e6158f6f9aeb232b0792

See more details on using hashes here.

File details

Details for the file tulip_python-4.10.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-4.10.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 e5545e80da1a8d813d250660ef11dae5ae4fe58e1c0226ee05c9a344f550f2b2
MD5 040dab07b8304359feee586f8e82d296
BLAKE2b-256 91da44a024190a42add4bd38b039a8551fcd5b19be0b6fcc4166ac68cc6366e0

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page