Skip to main content

Large graphs analysis and drawing

Project description

Module description

Graphs play an important role in many research areas, such as biology, microelectronics, social sciences, data mining, and computer science. Tulip (http://tulip.labri.fr) [1, 2]_ is an Information Visualization framework dedicated to the analysis and visualization of such relational data. Written in C++ the framework enables the development of algorithms, visual encodings, interaction techniques, data models, and domain-specific visualizations.

The Tulip core library is available to the Python community through the Tulip-Python bindings [3]. The bindings have been developed using the SIP tool [4] from Riverbank Computed Limited, allowing to easily create quality Python bindings for any C/C++ library. The main features provided by the bindings are the following ones:

  • Creation and manipulation of graphs : Tulip provides an efficient graph data structure for storing large and complex networks. It is also one of the few that offer the possibility to efficiently define and navigate graph hierarchies or cluster trees (nested sub-graphs).

  • Storage of data on graph elements : Tulip allows to associate different kind of serializable data (boolean, integer, float, string, …) and visual attributes (layout, color, size, …) to graph elements. All these data can be easily accessed from the Tulip graph data structure facilitating the development of algorithms.

  • Application of algorithms of different types on graph : Tulip has been designed to be easily extensible and provides a variety of graph algorithms (layout, metric, clustering, …) implemented as C++ plugins. All these algorithms can be called from Python. As Tulip is dedicated to graph visualization, it is provided with numerous state of the art graph layout algorithms but also a bridge to the Open Graph Drawing Framework (http://www.ogdf.net) [5]

Release notes

Some information regarding the Tulip-Python releases pushed on the Python Packaging Index:

  • 5.0.0: based on Tulip 5.0.0 released on 27/06/2017

    • mainly a bugs and memory leaks fix release for the Python bindings that now benefit from the performance improvements recently integrated in the tulip-core C++ library

    • some new methods added in the API and some deprecated (see updated documentation)

    • new Tulip plugins have been added, notably import ones like BibTex, GraphML, npm, … (see updated plugins list in the documentation)

  • 4.10.0: based on Tulip 4.10.0 released on 08/12/2016

    • some new methods added and API improvements (see updated documentation)

    • add a new section in the documentation detailing the C++ plugins bundled with Tulip that can be called from Python

    • improvements for working with Tulip color scales (see updated documentation)

  • 4.9.0 : based on Tulip 4.9.0 released on 08/07/2016

    • add a mechanism to ease the creation of graph properties through type inference (see updated documentation)

    • simplify the declaration of file parameters for Tulip Python plugins (see updated documentation)

    • a few bugs fixes

  • 4.8.1 : based on Tulip 4.8.1 released on 16/02/2016

    • add new convenient methods for getting / setting multiple properties values of nodes and edges, trough the use of a dictionnary, in the tlp.Graph class (see updated documentation)

    • some bugs fixes

  • 4.8.0.post1 :

    • Fix crash on MacOS when calling OGDF layout algorithms

    • minor fixes

  • 4.8.0 : Initial release based on Tulip 4.8

Example

The following script imports the dependency graph from the locally installed pip packages, draws it using a force directed layout algorithm and serializes the resulting graph to a file through the TLP graph format. The imported graph can then be visualized through the Tulip software or the use of the dedicated tulipgui module, enabling to create the OpenGL visualizations available in Tulip from Python.

import pip
import re

from tulip import tlp

# create a new empty graph
graph = tlp.newGraph()

# dictionnary mapping package name to graph node
packageNode = {}

def addPackageNode(package):
  if not package in packageNode:
    n = graph.addNode()
    packageNode[package] = n
    # set node label for use with Tulip visualizations components
    graph['viewLabel'][n] = package

# iterate over locally installed pip packages
for d in pip.get_installed_distributions():
  # add a node associated to the package
  addPackageNode(d.key)

# iterate over locally installed pip packages
for d in pip.get_installed_distributions():
  # iterate over package requirements
  for r in d.requires():
    # process requirement name to get its pip package name :
    # switch to lower case and remove version info if any
    s = str(r).lower()
    match = re.search('|'.join(map(re.escape, '<=>;!')), s)
    if match:
      s = s[:match.start()]
    # add dependency package node if it does not exist yet
    addPackageNode(s)
    # add an edge between the pip package and its dependency in the graph
    graph.addEdge(packageNode[d.key], packageNode[s])

# apply a force directed layout algorithm on the graph then a connected component packing algorithm.
# algorithms are called with their default parameters.
# resulting layout will be stored in the defaut graph layout property named 'viewLayout'
graph.applyLayoutAlgorithm('Fast Multipole Multilevel Embedder (OGDF)')
graph.applyLayoutAlgorithm('Connected Component Packing (Polyomino)')

tlp.saveGraph(graph, 'pip_deps.tlp')

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tulip_python-5.0.0-cp36-cp36m-win_amd64.whl (24.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tulip_python-5.0.0-cp36-cp36m-win32.whl (22.7 MB view details)

Uploaded CPython 3.6m Windows x86

tulip_python-5.0.0-cp36-cp36m-manylinux1_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.6m

tulip_python-5.0.0-cp36-cp36m-manylinux1_i686.whl (10.9 MB view details)

Uploaded CPython 3.6m

tulip_python-5.0.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (17.4 MB view details)

Uploaded CPython 3.6m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

tulip_python-5.0.0-cp35-cp35m-win_amd64.whl (24.3 MB view details)

Uploaded CPython 3.5m Windows x86-64

tulip_python-5.0.0-cp35-cp35m-win32.whl (22.7 MB view details)

Uploaded CPython 3.5m Windows x86

tulip_python-5.0.0-cp35-cp35m-manylinux1_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.5m

tulip_python-5.0.0-cp35-cp35m-manylinux1_i686.whl (10.9 MB view details)

Uploaded CPython 3.5m

tulip_python-5.0.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (17.4 MB view details)

Uploaded CPython 3.5m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

tulip_python-5.0.0-cp34-cp34m-win_amd64.whl (24.3 MB view details)

Uploaded CPython 3.4m Windows x86-64

tulip_python-5.0.0-cp34-cp34m-win32.whl (22.7 MB view details)

Uploaded CPython 3.4m Windows x86

tulip_python-5.0.0-cp34-cp34m-manylinux1_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.4m

tulip_python-5.0.0-cp34-cp34m-manylinux1_i686.whl (10.9 MB view details)

Uploaded CPython 3.4m

tulip_python-5.0.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (17.4 MB view details)

Uploaded CPython 3.4m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

tulip_python-5.0.0-cp33-cp33m-win_amd64.whl (24.3 MB view details)

Uploaded CPython 3.3m Windows x86-64

tulip_python-5.0.0-cp33-cp33m-win32.whl (22.7 MB view details)

Uploaded CPython 3.3m Windows x86

tulip_python-5.0.0-cp33-cp33m-manylinux1_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.3m

tulip_python-5.0.0-cp33-cp33m-manylinux1_i686.whl (10.9 MB view details)

Uploaded CPython 3.3m

tulip_python-5.0.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (17.4 MB view details)

Uploaded CPython 3.3m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

tulip_python-5.0.0-cp27-cp27mu-manylinux1_x86_64.whl (11.2 MB view details)

Uploaded CPython 2.7mu

tulip_python-5.0.0-cp27-cp27mu-manylinux1_i686.whl (10.9 MB view details)

Uploaded CPython 2.7mu

tulip_python-5.0.0-cp27-cp27m-win_amd64.whl (24.3 MB view details)

Uploaded CPython 2.7m Windows x86-64

tulip_python-5.0.0-cp27-cp27m-win32.whl (22.7 MB view details)

Uploaded CPython 2.7m Windows x86

tulip_python-5.0.0-cp27-cp27m-manylinux1_x86_64.whl (11.2 MB view details)

Uploaded CPython 2.7m

tulip_python-5.0.0-cp27-cp27m-manylinux1_i686.whl (10.9 MB view details)

Uploaded CPython 2.7m

tulip_python-5.0.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (17.4 MB view details)

Uploaded CPython 2.7m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

File details

Details for the file tulip_python-5.0.0-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tulip_python-5.0.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ba28b23c87306acd126651badb108892db89c6b884fea69f73bfdae71b190f03
MD5 872c9df0135da1b29c24413b4e9afc83
BLAKE2b-256 f65438237885caf478e9ae3c452e07539fd3468f5ba45b4113718eda7bd4d40c

See more details on using hashes here.

File details

Details for the file tulip_python-5.0.0-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for tulip_python-5.0.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 27084d7213e66d11858a611d2098e1694d2924340569b3b09e0c9c33771ee143
MD5 58d9a5b216e43f6891cb41d941fca11f
BLAKE2b-256 7c4e9f966267b6fcbda1744da9055ee36681b3740fedcb0ba76da0fe353dbf92

See more details on using hashes here.

File details

Details for the file tulip_python-5.0.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-5.0.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 cd32552fd491f108e12ca2ca0215ab99d4c49a6534956a68acd81d9a235c6ffc
MD5 4985db360b4d95c7ffd65f6e0509029c
BLAKE2b-256 57e364a4d02bbf04e6be3d23d8e1c3fceb89597dc218828a2ea0bd6e71322f65

See more details on using hashes here.

File details

Details for the file tulip_python-5.0.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for tulip_python-5.0.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 23b5f810ee048b043c6cecf488108d587ca644f39c970850d0615674541de266
MD5 038189a2e5279ac12258c8a6e06d195b
BLAKE2b-256 84795c6d23c3b3224b4958689b39c22c7f5349d3f32bb59756a92b94c5bac77a

See more details on using hashes here.

File details

Details for the file tulip_python-5.0.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-5.0.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 35a5bd423578b59694ae463c9407f09af5648bd8d3d40f382553c6cdebe1f4b6
MD5 a9591789419b7c04920bfe553815b24f
BLAKE2b-256 88c2535792b8c32cd7b28d77ad6053050fd69602a8b149427c1aaa835246d86d

See more details on using hashes here.

File details

Details for the file tulip_python-5.0.0-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for tulip_python-5.0.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 51b8584c980b66b504b86bb5fbd983c9a821e06b4bd6be8c36d7736872726822
MD5 e0f0079cf7fd87d63b27658e244dcc31
BLAKE2b-256 d61f83d6c0c1b2d8ad708957e8a5c250c60e6cdf6b29bbee1e0c22360f4d3df4

See more details on using hashes here.

File details

Details for the file tulip_python-5.0.0-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for tulip_python-5.0.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 44dfc07de496a83218a0473c1253212820788262a0001d45a1ce0e3d70fed0a2
MD5 ec818e2012f741c0668bf235806399c6
BLAKE2b-256 afaacd05359e6b439f21a2c8c1d2e1c6a17e7f9c902474304c1d4782b726b5e1

See more details on using hashes here.

File details

Details for the file tulip_python-5.0.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-5.0.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 32de7956cdfa0df860b155b366decb83079f3212b0a2cab80f380180f757df45
MD5 40e8b3e06990eb776eecb36a5fb8c300
BLAKE2b-256 d5eddc35840b9d16e5adc401abbafa30e9b8c328ef7650f3524c3ca911051b70

See more details on using hashes here.

File details

Details for the file tulip_python-5.0.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for tulip_python-5.0.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 5db4e6c28292a3987803b47b6e44311274dd821da565ec11327fd905a3e99aa5
MD5 e41822435c94261cdb7735b75053db46
BLAKE2b-256 31910653d1f69f325fe26bfbafc35f38e83d53507372b3e551cf5240e41cbde3

See more details on using hashes here.

File details

Details for the file tulip_python-5.0.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-5.0.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 097539eb735e6fa378f40a22a5174aef8f2da3e39ab6cdab8a7ccc7a44767490
MD5 d6193d5f0dfcb64edc9ca3ed880d578a
BLAKE2b-256 f35a987ec2024488d8aaa07707336caf0d0bd592bf657383ef9a35b94b6468bd

See more details on using hashes here.

File details

Details for the file tulip_python-5.0.0-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for tulip_python-5.0.0-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 eb0e4945e3a448c150e73038e845f5e3bce0ce416e1cfae2c2ca4c2c936b6213
MD5 cae154f6f6604c87e29a6eb668a6725d
BLAKE2b-256 324e3d0df647467ef8eac3f66d35741024891e381fbd778b74c4aa32bf4a9044

See more details on using hashes here.

File details

Details for the file tulip_python-5.0.0-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for tulip_python-5.0.0-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 df222634722d0de5aa5e1849b587635c311e01d5f220e208924639fea24bae77
MD5 2387af3a98c22e75b5ead77ac2b5d08c
BLAKE2b-256 7bdcd35913240d66b324a0dc033199385a842e02e4dceaa7aec43c4001d7ea28

See more details on using hashes here.

File details

Details for the file tulip_python-5.0.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-5.0.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 287004aac9290693b0ab538be05d8641102b689e3e1ffb597c896e2d0197a2ae
MD5 49da8428503cfd515feb5fbff249cbf9
BLAKE2b-256 f63c37ad22053a959b035a0fb32d3fec0737c4fb7cd5f4ea0236818945f594f6

See more details on using hashes here.

File details

Details for the file tulip_python-5.0.0-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for tulip_python-5.0.0-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 95ed609730c7c9b71c75b29d92797b7e69065d99e1b3a52d6b8527ecd3b58ad9
MD5 7f973d92849f6b1bb0ce3583e0a93e0e
BLAKE2b-256 39b24005e17c3cd144e2f512f061b25a9e9677684d947d76a659aa37c29cc8a7

See more details on using hashes here.

File details

Details for the file tulip_python-5.0.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-5.0.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 6a95fdbcb96f28aca9f8bd3f561afd35aed29f509fcf2bcde7d42c354563ea5a
MD5 c297333a8573985975322b21206d8275
BLAKE2b-256 5cd0301a2fa4202510e816f1a91b0f3c1b79dbe4e191d16d239fda7d4fdafcb2

See more details on using hashes here.

File details

Details for the file tulip_python-5.0.0-cp33-cp33m-win_amd64.whl.

File metadata

File hashes

Hashes for tulip_python-5.0.0-cp33-cp33m-win_amd64.whl
Algorithm Hash digest
SHA256 a04d33d0d7b7716d91fca97f4228346d1e8d756e73592bbde031681a91ba0d9b
MD5 d20b516d62fc87bfb4140dd01fb3aebb
BLAKE2b-256 adb995ccf7c9eb7e452176f7cd9d4496406b966df10f210a334db5be23ef5e3d

See more details on using hashes here.

File details

Details for the file tulip_python-5.0.0-cp33-cp33m-win32.whl.

File metadata

File hashes

Hashes for tulip_python-5.0.0-cp33-cp33m-win32.whl
Algorithm Hash digest
SHA256 a89129e9b5dbda1bfca45c34823ec426ba82bb1675e20a33b4aed1222d90baf7
MD5 a305219f6f7432867e34705793706851
BLAKE2b-256 9a374551316abd4997d08eb0d8d9635a5dd9797ec3aebb8511211fcf51370c3f

See more details on using hashes here.

File details

Details for the file tulip_python-5.0.0-cp33-cp33m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-5.0.0-cp33-cp33m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5ea5eb1116094a946002bf8d664b87c2a9c50c8e67179af28f1eae38683510f9
MD5 0bf631af8712f20657edc6df3dd8d8f9
BLAKE2b-256 c647cb17dd083e1cf32f5ee3b600c8cc6c16debf15ea292fb3cef55ec4ee2d4a

See more details on using hashes here.

File details

Details for the file tulip_python-5.0.0-cp33-cp33m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for tulip_python-5.0.0-cp33-cp33m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 f3312fbe1cb4ee762a5fdcbb58122df9fb32c909c94fc965ec20a380f5920065
MD5 6b985d9c01154bcc0e24ed74bb6eb0a9
BLAKE2b-256 fb1c5ceb42b37f1d2365af51faf50422ee56efff5e586c146b5b87976b4bd85c

See more details on using hashes here.

File details

Details for the file tulip_python-5.0.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-5.0.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 8981ebf5e45643a1e0d7a13d6fa351c321553ec274f54bbcf1719e47408f59f2
MD5 980bee1eb96d83ff2acf0b09d2d01ebc
BLAKE2b-256 d5dbb1bb74d01137b0429e04aa539e3ec4e816fd0cfafc265696f4a3923e4cd6

See more details on using hashes here.

File details

Details for the file tulip_python-5.0.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-5.0.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a829583a0626b3531f74b76d3ad66f33d00722188ac67d714215069308dee99a
MD5 03cc257b002bb053560657b013196f94
BLAKE2b-256 67db11ea0ae691c67710c6f846e0aedefc9379d4c9ece716bb356e924f981250

See more details on using hashes here.

File details

Details for the file tulip_python-5.0.0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for tulip_python-5.0.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 4f18c4f5d14561af1509903c4f6b35ab7cacb491b62a752c78991c6044a340cc
MD5 2129030e957b1c9563ec76f845393f6f
BLAKE2b-256 610354e111ea24928001afd9bf6efd7d6f465cca3c1f72b9a6a7f6d15a47ac6e

See more details on using hashes here.

File details

Details for the file tulip_python-5.0.0-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for tulip_python-5.0.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 50e96655652608985414565ba2d0dcda6c15da327a61770e2beb5c787fee6d67
MD5 6d491fa89f4e788b4cec464aa827001c
BLAKE2b-256 dfcda81f91d9e1d0a40cf47a71063e6fa2aee722f5438626aea8d970004a7fa3

See more details on using hashes here.

File details

Details for the file tulip_python-5.0.0-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for tulip_python-5.0.0-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 215b2eb1bbee47cef6741fca8e24e9255330f436e2006179a607e2b3799a32c5
MD5 350846af9de71635aec772c241728f2d
BLAKE2b-256 9c73b395fcfcc8aa5faa6084d3f505575e65a38b5597aea213235b079bc18eda

See more details on using hashes here.

File details

Details for the file tulip_python-5.0.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-5.0.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 01538dd2f5096cc47ebb7aa72c78d834f9f349c8564c97f04c07f481f2c69237
MD5 3cba796c3bb9c48b31c724d15021276f
BLAKE2b-256 774b01104ba3c40c5476cacc25c55623b2fd4da3ab907e8a804243dc756ed4e8

See more details on using hashes here.

File details

Details for the file tulip_python-5.0.0-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for tulip_python-5.0.0-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ccb0f1072d61c6fed9dfe407d2d1465a9c9b6c93059e179c4fd96bbe0f8bfcd4
MD5 b17bf28fcf822d61cecdc56742985d94
BLAKE2b-256 45e5855ce46c5b3becdd4c0b593f4319a1329a4b6bb4b3b53990a27a95d83284

See more details on using hashes here.

File details

Details for the file tulip_python-5.0.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-5.0.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 f4281aa6c2e392d334a8bbcc45fa32b082b1d39232d7c1bc3ba9d0a99288847f
MD5 f8b33c3911ec2db95f9195aa92ed1d58
BLAKE2b-256 041773201fe866fbeeb5223513d9e1d2ddbefeb525c73144601d20b2800beecf

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page