Skip to main content

Large graphs analysis and drawing

Project description

Module description

Graphs play an important role in many research areas, such as biology, microelectronics, social sciences, data mining, and computer science. Tulip (http://tulip.labri.fr) [1] [2] [3] is an Information Visualization framework dedicated to the analysis and visualization of such relational data. Written in C++ the framework enables the development of algorithms, visual encodings, interaction techniques, data models, and domain-specific visualizations.

The Tulip core library is available to the Python community through the Tulip-Python bindings [4]. The bindings have been developed using the SIP tool [5] from Riverbank Computed Limited, allowing to easily create quality Python bindings for any C/C++ library. The main features provided by the bindings are the following ones:

  • Creation and manipulation of graphs : Tulip provides an efficient graph data structure for storing large and complex networks. It is also one of the few that offer the possibility to efficiently define and navigate graph hierarchies or cluster trees (nested subgraphs).

  • Storage of data on graph elements : Tulip allows to associate different kind of serializable data (boolean, integer, float, string, …) and visual attributes (layout, color, size, …) to graph elements. All these data can be easily accessed from the Tulip graph data structure facilitating the development of algorithms.

  • Application of algorithms of different types on graph : Tulip has been designed to be easily extensible and provides a variety of graph algorithms (layout, metric, clustering, …) implemented as C++ plugins. All these algorithms can be called from Python. As Tulip is dedicated to graph visualization, it is provided with numerous state of the art graph layout algorithms but also a bridge to the Open Graph Drawing Framework (http://www.ogdf.net) [6]

References

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tulip_python-5.6.0-cp39-cp39-win_amd64.whl (14.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

tulip_python-5.6.0-cp39-cp39-manylinux2010_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tulip_python-5.6.0-cp39-cp39-macosx_10_13_x86_64.whl (7.9 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

tulip_python-5.6.0-cp38-cp38-win_amd64.whl (14.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

tulip_python-5.6.0-cp38-cp38-manylinux2010_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tulip_python-5.6.0-cp38-cp38-macosx_10_13_x86_64.whl (7.9 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tulip_python-5.6.0-cp37-cp37m-win_amd64.whl (14.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

tulip_python-5.6.0-cp37-cp37m-manylinux2010_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tulip_python-5.6.0-cp37-cp37m-macosx_10_13_x86_64.whl (7.9 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tulip_python-5.6.0-cp36-cp36m-win_amd64.whl (14.4 MB view details)

Uploaded CPython 3.6m Windows x86-64

tulip_python-5.6.0-cp36-cp36m-manylinux2010_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tulip_python-5.6.0-cp36-cp36m-macosx_10_13_x86_64.whl (7.9 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file tulip_python-5.6.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tulip_python-5.6.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.18

File hashes

Hashes for tulip_python-5.6.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1e18ae835b35de2788c998a27cc64efacde50810ed09d224d5468b4775f67829
MD5 c955ea25f4e4b08ddb80502177c92004
BLAKE2b-256 887559ef5de37e863c379aa9662d3dd57d06c55f79e763ecda339f237f8b2f24

See more details on using hashes here.

File details

Details for the file tulip_python-5.6.0-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: tulip_python-5.6.0-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.18

File hashes

Hashes for tulip_python-5.6.0-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 82b5732214658406cd54a24f90fbba1b8656a8b10c78b64324e31547e1976ab5
MD5 e66fb199d868e19912a1482aafc2087a
BLAKE2b-256 b24135a5b71b341cdd229223b52fe98f7ffee82e6017ff499d61c831d2ab90f6

See more details on using hashes here.

File details

Details for the file tulip_python-5.6.0-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: tulip_python-5.6.0-cp39-cp39-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 7.9 MB
  • Tags: CPython 3.9, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.18

File hashes

Hashes for tulip_python-5.6.0-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 24963ec29cc3c9ad8da1cfefe89b93b561eb25a88cd1ffb76fc9070ff7fd9eea
MD5 093251ff96c8dd94f997eabd32bcb403
BLAKE2b-256 96d1c2b551b134f8ce847e9c91828f341dd967ae060042a0d356edc008404d43

See more details on using hashes here.

File details

Details for the file tulip_python-5.6.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tulip_python-5.6.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.18

File hashes

Hashes for tulip_python-5.6.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 57c1a6004062d356ff4e6668e510b791ae36345656eb9e9154f3a76b87800eca
MD5 178048e46798fd75d90a646561c101bf
BLAKE2b-256 fac197a41100d58fe7ab5e80df13525bd4ccb5eeb54dd4b7643871111d73e596

See more details on using hashes here.

File details

Details for the file tulip_python-5.6.0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: tulip_python-5.6.0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.18

File hashes

Hashes for tulip_python-5.6.0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c2f324915cb59086eeecf7247b3edbed7c1429bd2657b33a453e60fba0914d7c
MD5 e42522b89897d349ea0552678cd158cb
BLAKE2b-256 ddc63d639419c57aedde473920246932fb4cbf1bf71293331538a7d2b7942c3c

See more details on using hashes here.

File details

Details for the file tulip_python-5.6.0-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: tulip_python-5.6.0-cp38-cp38-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 7.9 MB
  • Tags: CPython 3.8, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.18

File hashes

Hashes for tulip_python-5.6.0-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 fe2692159c227c5e6d0ac0c330803573efb52e38131c12504d1741d8d37b54a7
MD5 47cb0d40157d92c782aab02a02cfe90b
BLAKE2b-256 8e1c158fd5bd45c09825787792dfeccb9dee3069f82935a0a006739bf0a9bcab

See more details on using hashes here.

File details

Details for the file tulip_python-5.6.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tulip_python-5.6.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.18

File hashes

Hashes for tulip_python-5.6.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 50ca17aaf8821d09f3485065f777c5cb50f8dd068e7ab01dbc7bfcaaf3bb06b7
MD5 08b2a6aef0bcc8b8a58ea8324b3aa5ac
BLAKE2b-256 8192e97cab1f3bae90d3d3f98bed75745050c59b586acfc1614ae0dadb553444

See more details on using hashes here.

File details

Details for the file tulip_python-5.6.0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: tulip_python-5.6.0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.3 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.18

File hashes

Hashes for tulip_python-5.6.0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6ea0d43b4c95952d6d2f18852bdbcb0dcd83f5e43478a225cd38ff1569502ca3
MD5 9dfb7c9bf3d970d62e66fa89fe026ff4
BLAKE2b-256 5d2363606615dde22dea5f5f69fc3c1904d82b7e1f421558cf2487b5e4e5a9d3

See more details on using hashes here.

File details

Details for the file tulip_python-5.6.0-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: tulip_python-5.6.0-cp37-cp37m-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 7.9 MB
  • Tags: CPython 3.7m, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.18

File hashes

Hashes for tulip_python-5.6.0-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c2ea7c9cbacf1b875b0a576d4518b02cdc0985074dfa2711697d1995bb43a75a
MD5 1aa98514efed8dcf8ccfb0f5c48c9eba
BLAKE2b-256 3b1e071a166d51f8ab2636d2c60aef180f2fd3cee9606d06abc67924e289586d

See more details on using hashes here.

File details

Details for the file tulip_python-5.6.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tulip_python-5.6.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.18

File hashes

Hashes for tulip_python-5.6.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 eb15b51f5386009953cc08222e17182ea0e7f56ad46d9e7e3d67cc7fb29bab3f
MD5 0411d523499e81bef28d869c5d647d7e
BLAKE2b-256 bd5b51e4f9dee1da2eb006260e09dd9a53972b5a2515232cfede3ec94ae4d228

See more details on using hashes here.

File details

Details for the file tulip_python-5.6.0-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: tulip_python-5.6.0-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.3 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.18

File hashes

Hashes for tulip_python-5.6.0-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 61ad30ee2b06fb8c6f6b493446a45ff7f02fd134b4b6e88d4483fe913b006ff2
MD5 689f0e597a73b920160d0172f704adc9
BLAKE2b-256 da68bbf0984611e3c63f8be3e2b1e7d69d88385bc286cf337c893ae0d5d70509

See more details on using hashes here.

File details

Details for the file tulip_python-5.6.0-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: tulip_python-5.6.0-cp36-cp36m-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 7.9 MB
  • Tags: CPython 3.6m, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.18

File hashes

Hashes for tulip_python-5.6.0-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 1319a30d04d09fcc59de125810e88c16ad8d6e760f23bb00fba1658b2ac04d8b
MD5 31d71c7e052cf229dc52dbf2bd93ac99
BLAKE2b-256 a29d6e1b3829241a4b253011e8ada3a156ff1cd498bade2d6e0d3a86ebed57c9

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page