Skip to main content

Large graphs analysis and drawing

Project description

Module description

Graphs play an important role in many research areas, such as biology, microelectronics, social sciences, data mining, and computer science. Tulip (http://tulip.labri.fr) [1] [2] [3] is an Information Visualization framework dedicated to the analysis and visualization of such relational data. Written in C++ the framework enables the development of algorithms, visual encodings, interaction techniques, data models, and domain-specific visualizations.

The Tulip core library is available to the Python community through the Tulip-Python bindings [4]. The bindings have been developed using the SIP tool [5] from Riverbank Computed Limited, allowing to easily create quality Python bindings for any C/C++ library. The main features provided by the bindings are the following ones:

  • Creation and manipulation of graphs : Tulip provides an efficient graph data structure for storing large and complex networks. It is also one of the few that offer the possibility to efficiently define and navigate graph hierarchies or cluster trees (nested subgraphs).

  • Storage of data on graph elements : Tulip allows to associate different kind of serializable data (boolean, integer, float, string, …) and visual attributes (layout, color, size, …) to graph elements. All these data can be easily accessed from the Tulip graph data structure facilitating the development of algorithms.

  • Application of algorithms of different types on graph : Tulip has been designed to be easily extensible and provides a variety of graph algorithms (layout, metric, clustering, …) implemented as C++ plugins. All these algorithms can be called from Python. As Tulip is dedicated to graph visualization, it is provided with numerous state of the art graph layout algorithms but also a bridge to the Open Graph Drawing Framework (http://www.ogdf.net) [6]

References

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tulip_python-5.6.3-cp310-cp310-win_amd64.whl (16.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

tulip_python-5.6.3-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

tulip_python-5.6.3-cp310-cp310-macosx_10_14_universal2.whl (7.8 MB view details)

Uploaded CPython 3.10 macOS 10.14+ universal2 (ARM64, x86-64)

tulip_python-5.6.3-cp39-cp39-win_amd64.whl (16.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

tulip_python-5.6.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tulip_python-5.6.3-cp39-cp39-macosx_10_14_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tulip_python-5.6.3-cp38-cp38-win_amd64.whl (16.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

tulip_python-5.6.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tulip_python-5.6.3-cp38-cp38-macosx_10_14_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tulip_python-5.6.3-cp37-cp37m-win_amd64.whl (16.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

tulip_python-5.6.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tulip_python-5.6.3-cp37-cp37m-macosx_10_14_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tulip_python-5.6.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tulip_python-5.6.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 16.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.18

File hashes

Hashes for tulip_python-5.6.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8bfc6408243c42bb676cdfb94c2ab2abcb7d96e89509738e0b6f9e9392a24327
MD5 d0643e53c259f4e0744be6f8cc34a07f
BLAKE2b-256 72aae8494dc655ec50c2ff04ad5b2b7e1f9e2feadccafbb20161e191888bbefe

See more details on using hashes here.

File details

Details for the file tulip_python-5.6.3-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-5.6.3-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6ca67afca7507810a8e13b037238b35421c88c1bb015fa118dde13c0a204b190
MD5 dcc7b7d61aeb268de3b0a7b95f491e2b
BLAKE2b-256 504b9d0c39278432011d9aa71d844ee8bc560e07be4807b6ca8781d39634d368

See more details on using hashes here.

File details

Details for the file tulip_python-5.6.3-cp310-cp310-macosx_10_14_universal2.whl.

File metadata

  • Download URL: tulip_python-5.6.3-cp310-cp310-macosx_10_14_universal2.whl
  • Upload date:
  • Size: 7.8 MB
  • Tags: CPython 3.10, macOS 10.14+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.18

File hashes

Hashes for tulip_python-5.6.3-cp310-cp310-macosx_10_14_universal2.whl
Algorithm Hash digest
SHA256 f325978ff2d3d71ad145d5865dc020026334117b8bc1870adbb451e19e04ce2e
MD5 b6625f066fe0155f173426e77d2f7b87
BLAKE2b-256 08ff35d6dd6a9240c6130d2a0b22775d17d07c7cd9b709ed3fc1b3169b49b6b1

See more details on using hashes here.

File details

Details for the file tulip_python-5.6.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tulip_python-5.6.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 16.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.18

File hashes

Hashes for tulip_python-5.6.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1206782c47a3432cf5ad5e98bcc01326384759ba728b8e950a9589338f865763
MD5 27999b566532e4d7572fd145190d3ee2
BLAKE2b-256 be8d74743cc95d3bc0d09e297403ae923c7df553e51c9e1753868d6f937eeaf4

See more details on using hashes here.

File details

Details for the file tulip_python-5.6.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-5.6.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6b8be341ae10d1c7183446f5fa8f2f7f81aff804eb7164d7d163d078a2a17d41
MD5 1e2860b19e8e8795de718a2474a45c9e
BLAKE2b-256 cad349379010a04764a6027057f0e36d4dea93802f56c7c3558929a2c5ccc0fd

See more details on using hashes here.

File details

Details for the file tulip_python-5.6.3-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tulip_python-5.6.3-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 7.8 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.18

File hashes

Hashes for tulip_python-5.6.3-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b05ee184fba4e76815cbb4edce8767e6cec23e15c01c83fced4220789822562e
MD5 c4041726bf2fa462955349b3ad28b8cd
BLAKE2b-256 4129c3c1014cc725da64e65d168f5d8d3f0ee92f01b48551746af2a2adf54353

See more details on using hashes here.

File details

Details for the file tulip_python-5.6.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tulip_python-5.6.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 16.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.18

File hashes

Hashes for tulip_python-5.6.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 266cf09f813b746ef2a92218462c2c4fb31ce318a330b901ba54512e9492b5b4
MD5 bceea43fb7d834b303828efdaad5334b
BLAKE2b-256 2b64feadda23c8faa198392476e15e3ea3c4e591629573bbd34311c9a0d3164b

See more details on using hashes here.

File details

Details for the file tulip_python-5.6.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-5.6.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0ed5579ab3bf07be0fe5d8a00291a73ac37184ea9ff5d65aa6659fff7164bbec
MD5 aac73a216fc51e63faef69a9d56170c0
BLAKE2b-256 8691f5167835d7ecf2c1b2d1ae7ba91841a4a6c14c89dfa9ae28d90c28fbe15a

See more details on using hashes here.

File details

Details for the file tulip_python-5.6.3-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tulip_python-5.6.3-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 7.8 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.18

File hashes

Hashes for tulip_python-5.6.3-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7f44c2036c3490d1af7f2830aaaa1bdad239827c406135bda4083efe0696e3af
MD5 deab81fbe91482f66d12a619dec96baa
BLAKE2b-256 921464d479f97875dada0f3b10a282f3acd3455b8ca108fa7844704fef7342fe

See more details on using hashes here.

File details

Details for the file tulip_python-5.6.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tulip_python-5.6.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 16.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.18

File hashes

Hashes for tulip_python-5.6.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 44011fde54a7371ec522f613eacc32939eefbbfab11e7daec0886097e6ecd3d0
MD5 5893fee6fdd6f0815cea994b5024c97f
BLAKE2b-256 250f63d974392c1836c54836284c4edfcfdd6fbc9b1054062ca3fd43102af50c

See more details on using hashes here.

File details

Details for the file tulip_python-5.6.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tulip_python-5.6.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 491c291945855ce7c9374338ea18526c5be9d7f8e184e0de3df4088883dc91f9
MD5 07914e043f333e83a0994b631ab1dedd
BLAKE2b-256 9b3ddeb89ad9161e74f8a8b3e589975e1f0a224dc25a37586b37973af9e4304f

See more details on using hashes here.

File details

Details for the file tulip_python-5.6.3-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tulip_python-5.6.3-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 7.8 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.18

File hashes

Hashes for tulip_python-5.6.3-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a71752031b204f37d05b830493a04864c9de081984057eab632dbe9e089ff5c9
MD5 9e71a0bccbd4f6ce991114d0c24fa627
BLAKE2b-256 b5ba8be97bfdb8566488ae70c7da73e002f6a0f91bed648bf56b31a28efb4e64

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page