Skip to main content

Tulip GUI Python bindings

Project description

Module description

Graphs play an important role in many research areas, such as biology, microelectronics, social sciences, data mining, and computer science. Tulip (http://tulip.labri.fr) [1] [2] is an Information Visualization framework dedicated to the analysis and visualization of such relational data. Written in C++ the framework enables the development of algorithms, visual encodings, interaction techniques, data models, and domain-specific visualizations.

The Tulip GUI library is available to the Python community through the Tulip-Python bindings [3] allowing to create and manipulate Tulip views (typically Node Link diagrams) trough the tulipgui module. It has to be used with the tulip module dedicated to the creation, storage and manipulation of the graphs to visualize. The bindings have been developed using the SIP tool [4] from Riverbank Computed Limited, allowing to easily create quality Python bindings for any C/C++ library.

The main features provided by the bindings are the following ones:

  • creation of interactive Tulip visualizations (Adjacency Matrix, Geographic, Histogram, Node Link Diagram, Parallel Coordinates, Pixel Oriented, Scatter Plot, Self Organizing Map, Spreadsheet)

  • the ability to change the data source on opened visualizations

  • the possibilty to modify the rendering parameters for node link diagram visualizations

  • the ability to save visualization snapshots to image files on disk

Release notes

Some information regarding the Tulip-Python releases pushed on the Python Packaging Index:

  • 5.1.0: based on Tulip 5.1.0 released on 07/11/2017

  • 5.0.0: based on Tulip 5.0.0 released on 27/06/2017

  • 4.10.0: based on Tulip 4.10.0 released on 08/12/2016

  • 4.9.0 : based on Tulip 4.9.0 released on 08/07/2016

  • 4.8.1 : based on Tulip 4.8.1 released on 16/02/2016

  • 4.8.0 : Initial release based on Tulip 4.8

Example

The following script imports the tree structure of the file system directory of the Python standard library, applies colors to nodes according to degrees, computes a tree layout and quadratic Bézier shapes for edges. The imported graph and its visual encoding are then visualized by creating an interactive Node Link Diagram view. A window containing an OpenGL visualization of the graph will be created and displayed.

from tulip import tlp
from tulipgui import tlpgui

import os

# get the root directory of the Python Standard Libraries
pythonStdLibPath = os.path.dirname(os.__file__)

# call the 'File System Directory' import plugin from Tulip
# importing the tree structure of a file system
params = tlp.getDefaultPluginParameters('File System Directory')
params['directory color'] = tlp.Color.Blue
params['other color'] = tlp.Color.Red
params['directory'] = pythonStdLibPath
graph = tlp.importGraph('File System Directory', params)

# compute an anonymous graph double property that will store node degrees
degree = tlp.DoubleProperty(graph)
degreeParams = tlp.getDefaultPluginParameters('Degree')
graph.applyDoubleAlgorithm('Degree', degree, degreeParams)

# create a heat map color scale
heatMap = tlp.ColorScale([tlp.Color.Green, tlp.Color.Black, tlp.Color.Red])

# linearly map node degrees to colors using the 'Color Mapping' plugin from Tulip
# using the heat map color scale
colorMappingParams = tlp.getDefaultPluginParameters('Color Mapping', graph)
colorMappingParams['input property'] = degree
colorMappingParams['color scale'] = heatMap
graph.applyColorAlgorithm('Color Mapping', colorMappingParams)

# apply the 'Bubble Tree' graph layout plugin from Tulip
graph.applyLayoutAlgorithm('Bubble Tree')

# compute quadratic bezier shapes for edges
curveEdgeParams = tlp.getDefaultPluginParameters('Curve edges', graph)
curveEdgeParams['curve type'] = 'QuadraticDiscrete'
graph.applyAlgorithm('Curve edges', curveEdgeParams)

# create a node link diagram view of the graph,
# a window containing the Tulip OpenGL visualization
# will be created and displayed
nodeLinkView = tlpgui.createNodeLinkDiagramView(graph)
# set some rendering parameters for the graph
renderingParameters = nodeLinkView.getRenderingParameters()
renderingParameters.setViewArrow(True)
renderingParameters.setMinSizeOfLabel(8)
renderingParameters.setEdgeColorInterpolate(True)
nodeLinkView.setRenderingParameters(renderingParameters)

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tulipgui_python-5.2.1-cp37-cp37m-win_amd64.whl (30.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

tulipgui_python-5.2.1-cp37-cp37m-manylinux1_x86_64.whl (26.6 MB view details)

Uploaded CPython 3.7m

tulipgui_python-5.2.1-cp37-cp37m-macosx_10_9_x86_64.whl (40.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

tulipgui_python-5.2.1-cp36-cp36m-win_amd64.whl (30.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

tulipgui_python-5.2.1-cp36-cp36m-manylinux1_x86_64.whl (26.6 MB view details)

Uploaded CPython 3.6m

tulipgui_python-5.2.1-cp36-cp36m-macosx_10_9_x86_64.whl (40.3 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

tulipgui_python-5.2.1-cp35-cp35m-win_amd64.whl (30.2 MB view details)

Uploaded CPython 3.5m Windows x86-64

tulipgui_python-5.2.1-cp35-cp35m-manylinux1_x86_64.whl (26.6 MB view details)

Uploaded CPython 3.5m

tulipgui_python-5.2.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (40.3 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

tulipgui_python-5.2.1-cp34-cp34m-win_amd64.whl (30.2 MB view details)

Uploaded CPython 3.4m Windows x86-64

tulipgui_python-5.2.1-cp34-cp34m-manylinux1_x86_64.whl (26.6 MB view details)

Uploaded CPython 3.4m

tulipgui_python-5.2.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (40.3 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

tulipgui_python-5.2.1-cp27-cp27mu-manylinux1_x86_64.whl (26.6 MB view details)

Uploaded CPython 2.7mu

tulipgui_python-5.2.1-cp27-cp27m-win_amd64.whl (30.2 MB view details)

Uploaded CPython 2.7m Windows x86-64

tulipgui_python-5.2.1-cp27-cp27m-manylinux1_x86_64.whl (26.6 MB view details)

Uploaded CPython 2.7m

tulipgui_python-5.2.1-cp27-cp27m-macosx_10_9_x86_64.whl (40.3 MB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file tulipgui_python-5.2.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tulipgui_python-5.2.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 30.2 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.7.0

File hashes

Hashes for tulipgui_python-5.2.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 2653de86321d0929b4a8c3e438373d7db312b30f206ed8b3fb31fd8263037b32
MD5 7beb4977ea7fd34893bc5bb9ac747ee9
BLAKE2b-256 ec9c7c6a182360f8ce7ac33267a872e63f3f5a5fdf5fa0597ea29b456f31cf7d

See more details on using hashes here.

File details

Details for the file tulipgui_python-5.2.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: tulipgui_python-5.2.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 26.6 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/2.7.15rc1

File hashes

Hashes for tulipgui_python-5.2.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a1e2125b2a0cdce2595030f57ea139dd15fe3ffef5be8dd3f4d622f486cafd90
MD5 69c215e51365cefa8926e7674b2e7997
BLAKE2b-256 beb27405bdbd737b6664dc0e914861e9240b8e586d797ed1738f6f0c2dc53aba

See more details on using hashes here.

File details

Details for the file tulipgui_python-5.2.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: tulipgui_python-5.2.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 40.3 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/2.7.15

File hashes

Hashes for tulipgui_python-5.2.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fe952ba093c0406e43d7f2a16765bd7c3d4faa6f10a19aa7563e0f7142f86b2e
MD5 cb8e2db57764cd0805ab34cd74ffe37d
BLAKE2b-256 d5dcbb599edf8db1d321aa25d54d231a2b16a93ec1a77302fd7329835e85a329

See more details on using hashes here.

File details

Details for the file tulipgui_python-5.2.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tulipgui_python-5.2.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 30.2 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.7.0

File hashes

Hashes for tulipgui_python-5.2.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 2cecd11d9e0f9257570806a70d6502814ef682480ec717e53d51aa94627b3174
MD5 205dc1f751c91edde9c9929d5e3de725
BLAKE2b-256 d53416c0d54bdf031cd0f19449602f4ce8c3ff5302d8a84f0faabf25296aaa0f

See more details on using hashes here.

File details

Details for the file tulipgui_python-5.2.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: tulipgui_python-5.2.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 26.6 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/2.7.15rc1

File hashes

Hashes for tulipgui_python-5.2.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1b5d9c7defb7210b9d5c921d90ec7e527d10fe5fa5d87eef4eaabae6a84abc8b
MD5 29e0221da2b975f5c928742f27e525da
BLAKE2b-256 417d6ca8bd8344ea0f307936f4be16f34de3d6ea5cd0219dd86102fc123d1504

See more details on using hashes here.

File details

Details for the file tulipgui_python-5.2.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: tulipgui_python-5.2.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 40.3 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/2.7.15

File hashes

Hashes for tulipgui_python-5.2.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3fe1487b8ae3f112d6030970265123ebe6a81be4fad07ca6379a00ea08c419a7
MD5 c897b9e24ca0d1d38e93b93535b38e58
BLAKE2b-256 a01b6f3b4a62fc9dd4ca640979b318d562ea63a233762a31777e09fdeecf288e

See more details on using hashes here.

File details

Details for the file tulipgui_python-5.2.1-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: tulipgui_python-5.2.1-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 30.2 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.7.0

File hashes

Hashes for tulipgui_python-5.2.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 6614ff8f9a668ac606e29b68b1f66817c62745affe1c5171a9e02289d68c633c
MD5 a83dcd3c820fa31762adaedbeb6045a8
BLAKE2b-256 5a4fe5fd2b0435e2b567a4b981652cf025bf2605421337f5952f5f92db2f1585

See more details on using hashes here.

File details

Details for the file tulipgui_python-5.2.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: tulipgui_python-5.2.1-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 26.6 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/2.7.15rc1

File hashes

Hashes for tulipgui_python-5.2.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0f19bfebd82f4d0f609acf73bce40e93caeae993b8656ae5283ff078eced178c
MD5 44a8f009af7191dee94e60a831e7fc1c
BLAKE2b-256 d5d3d8413eb91fe253bc1e825fbd6364f14d72a386a19d75fd8c64e200efcdf4

See more details on using hashes here.

File details

Details for the file tulipgui_python-5.2.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for tulipgui_python-5.2.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 62a09b90597f6e19cc06c3b0c787f748994523eaa7fb49ce9279e034a1be1e11
MD5 22870ad64d0d12caaa113b97da381db1
BLAKE2b-256 5296affad8cee86a5c533979291b990daad0474a3e48449c1c1110adc77c08d2

See more details on using hashes here.

File details

Details for the file tulipgui_python-5.2.1-cp34-cp34m-win_amd64.whl.

File metadata

  • Download URL: tulipgui_python-5.2.1-cp34-cp34m-win_amd64.whl
  • Upload date:
  • Size: 30.2 MB
  • Tags: CPython 3.4m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.7.0

File hashes

Hashes for tulipgui_python-5.2.1-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 bea216509677ad870189389293e4f1a63d9f7b6a612bf4218fc61acc0492ad87
MD5 0ee7ed404a1661a7f8f5c6639905222d
BLAKE2b-256 82a093eed3410ba09c82974b7b56238c8b347ea44146ff257ba90ee01e26b724

See more details on using hashes here.

File details

Details for the file tulipgui_python-5.2.1-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

  • Download URL: tulipgui_python-5.2.1-cp34-cp34m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 26.6 MB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/2.7.15rc1

File hashes

Hashes for tulipgui_python-5.2.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9795b698a3b24fe85eccd46a7578410434dc3d2a019eaecbe2c37c0a57d9a076
MD5 b7c643760927171ed204b0a92c0c905f
BLAKE2b-256 b986d434859d895b4400979193ee3b4370d46545b9ce60afb16962c51dd6bb77

See more details on using hashes here.

File details

Details for the file tulipgui_python-5.2.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for tulipgui_python-5.2.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 687d150ea0818e10e116ad2a60bac9a13f1df5f665d7b88140b059ee5f54378e
MD5 25e00e8a9966be7f2e742d60fead87c5
BLAKE2b-256 d38b100da64bd9eaa2bbbf625c8bd9d1eb0b38a248bdc9ac5979a3ea96c6d65d

See more details on using hashes here.

File details

Details for the file tulipgui_python-5.2.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: tulipgui_python-5.2.1-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 26.6 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/2.7.15rc1

File hashes

Hashes for tulipgui_python-5.2.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f2a7dbfe981117cd019ab3088a26d6343068b19013f65c0054e395abd1f1fdf2
MD5 cc8bf3e6deeaceab5df223353d69f27b
BLAKE2b-256 0e5013e800547128e25f72fbcc9e8cbf79163940762ed2eab676ba1c8d872ba2

See more details on using hashes here.

File details

Details for the file tulipgui_python-5.2.1-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: tulipgui_python-5.2.1-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 30.2 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.7.0

File hashes

Hashes for tulipgui_python-5.2.1-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 929c500a8dc3e3581d97098095fadd1b2f6558c44b22ee7944d0b8da319bfd28
MD5 27f5d41bc51b9f9b024e8bb1973ddf1e
BLAKE2b-256 ac6d9faf5410ed2975c75cbc4a8cab5d00e3e978287b2bb693aff8edce09bb35

See more details on using hashes here.

File details

Details for the file tulipgui_python-5.2.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: tulipgui_python-5.2.1-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 26.6 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/2.7.15rc1

File hashes

Hashes for tulipgui_python-5.2.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f08ddc864c00d7b90b87029121b85483181ae298cc669696338e2401a918db73
MD5 0439f25828abc6e4dffb6a4329990e85
BLAKE2b-256 67ed70d023974f9e6593b966cb59dfc01409e163405780f230e372afb485eef5

See more details on using hashes here.

File details

Details for the file tulipgui_python-5.2.1-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: tulipgui_python-5.2.1-cp27-cp27m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 40.3 MB
  • Tags: CPython 2.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/2.7.15

File hashes

Hashes for tulipgui_python-5.2.1-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6c3e4bdb8b3d770510e3eca175ae7a8ba5f042f244153667a79779f75d11f293
MD5 aeaf520fd8273bb2b79ee1bc296b97d9
BLAKE2b-256 239b2616c322c3932b0eda181e133fba1d4da61f5d341a4bb600ec9513012386

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page