tune-easy: A hyperparameter tuning tool, extremely easy to use.
Project description
tune-easy
A hyperparameter tuning tool, extremely easy to use.
This package supports scikit-learn API estimators, such as SVM and LightGBM.
Usage
Example of All-in-one Tuning
from tune_easy import AllInOneTuning
import seaborn as sns
# Load Dataset
iris = sns.load_dataset("iris")
iris = iris[iris['species'] != 'setosa'] # Select 2 classes
TARGET_VARIALBLE = 'species' # Target variable
USE_EXPLANATORY = ['petal_width', 'petal_length', 'sepal_width', 'sepal_length'] # Explanatory variables
y = iris[OBJECTIVE_VARIALBLE].values
X = iris[USE_EXPLANATORY].values
###### Run All-in-one Tuning######
all_tuner = AllInOneTuning()
all_tuner.all_in_one_tuning(X, y, x_colnames=USE_EXPLANATORY, cv=2)
all_tuner.df_scores
If you want to know usage of the other classes, see API Reference and Examples
Example of Detailed Tuning
from tune_easy import LGBMClassifierTuning
from sklearn.datasets import load_boston
import seaborn as sns
# Load dataset
iris = sns.load_dataset("iris")
iris = iris[iris['species'] != 'setosa'] # Select 2 classes
OBJECTIVE_VARIALBLE = 'species' # Target variable
USE_EXPLANATORY = ['petal_width', 'petal_length', 'sepal_width', 'sepal_length'] # Explanatory variables
y = iris[OBJECTIVE_VARIALBLE].values
X = iris[USE_EXPLANATORY].values
###### Run Detailed Tuning######
tuning = LGBMClassifierTuning(X, y, USE_EXPLANATORY) # Initialize tuning instance
tuning.plot_first_validation_curve(cv=2) # Plot first validation curve
tuning.optuna_tuning(cv=2) # Optimization using Optuna library
tuning.plot_search_history() # Plot score increase history
tuning.plot_search_map() # Visualize relationship between parameters and validation score
tuning.plot_best_learning_curve() # Plot learning curve
tuning.plot_best_validation_curve() # Plot validation curve
If you want to know usage of the other classes, see API Reference and Examples
Example of MLflow logging
from tune_easy import AllInOneTuning
import seaborn as sns
# Load dataset
iris = sns.load_dataset("iris")
iris = iris[iris['species'] != 'setosa'] # Select 2 classes
TARGET_VARIALBLE = 'species' # Target variable
USE_EXPLANATORY = ['petal_width', 'petal_length', 'sepal_width', 'sepal_length'] # Explanatory variables
y = iris[TARGET_VARIALBLE].values
X = iris[USE_EXPLANATORY].values
###### Run All-in-one Tuning with MLflow logging ######
all_tuner = AllInOneTuning()
all_tuner.all_in_one_tuning(X, y, x_colnames=USE_EXPLANATORY, cv=2,
mlflow_logging=True) # Set MLflow logging argument
If you want to know usage of the other classes, see API Reference and Examples
Requirements
param-tuning-utility 0.2.1 requires
Python >=3.6
Scikit-learn >=0.24.2
Numpy >=1.20.3
Pandas >=1.2.4
Matplotlib >=3.3.4
Seaborn >=0.11.0
Optuna >=2.7.0
BayesianOptimization >=1.2.0
MLFlow >=1.17.0
LightGBM >=3.3.2
XGBoost >=1.4.2
seaborn-analyzer >=0.2.11
Installing tune-easy
Use pip to install the binary wheels on PyPI
$ pip install tune-easy
Support
Bugs may be reported at https://github.com/c60evaporator/tune-easy/issues
Contact
If you have any questions or comments about param-tuning-utility, please feel free to contact me via eMail: c60evaporator@gmail.com or Twitter: https://twitter.com/c60evaporator This project is hosted at https://github.com/c60evaporator/param-tuning-utility
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file tune-easy-0.2.1.tar.gz
.
File metadata
- Download URL: tune-easy-0.2.1.tar.gz
- Upload date:
- Size: 45.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a4e6a77636cba0923baa8d38021acb2f80ab130912b0fb71cf30cc34c727d6db |
|
MD5 | 78b68a7068397ed94cea198a3d0e0c32 |
|
BLAKE2b-256 | b3b0b144ed12ed6067188767780f7034582d48d0f13b73936bfb5649dbea4037 |
File details
Details for the file tune_easy-0.2.1-py3-none-any.whl
.
File metadata
- Download URL: tune_easy-0.2.1-py3-none-any.whl
- Upload date:
- Size: 52.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 616c44d4022f0be828aae9c38018e09e042a685ea9db3ec6abacb4b2d49f7a4e |
|
MD5 | 47a6f68b06fac043732fb621727670f9 |
|
BLAKE2b-256 | 94cf1ce8ee3504566bac3afb140d7fd8960acaa4887e3acd531982d920e1c098 |