Skip to main content

Tungstenkit is an open-source tool for building standardized containers for machine learning models.

Project description

Tungstenkit

Tungstenkit is an open-source tool for building standardized containers for machine learning models.

The key features are:

Learn More


Take the tour

Build a Tungsten model

Building a Tungsten model is easy. All you have to do is write a simple tungsten_model.py like below:

from typing import List

import torch
from tungstenkit import io, model


class Input(io.BaseIO):
    prompt: str


class Output(io.BaseIO):
    image: io.Image


@model.config(
    gpu=True,
    python_packages=["torch", "torchvision"],
    batch_size=4,
    description="Text to image"
)
class Model(model.TungstenModel[Input, Output]):
    def setup(self):
        weights = torch.load("./weights.pth")
        self.model = load_torch_model(weights)

    def predict(self, inputs: List[Input]) -> List[Output]:
        input_tensor = preprocess(inputs)
        output_tensor = self.model(input_tensor)
        outputs = postprocess(output_tensor)
        return outputs

Now, you can start a build process with the following command:

$ tungsten build

✅ Successfully built tungsten model: 'text-to-image:latest'

Run it as a RESTful API server

You can start a prediction with a REST API call.

Start a server:

$ docker run -p 3000:3000 --gpus all text-to-image:latest

INFO:     Setting up the model
INFO:     Getting inputs from the input queue
INFO:     Starting the prediction service
INFO:     Started server process [1]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://0.0.0.0:3000 (Press CTRL+C to quit)

Send a prediction request with a JSON payload:

$ curl -X 'POST' 'http://localhost:3000/predict' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '[{"prompt": "a professional photograph of an astronaut riding a horse"}]'

{
    "status": "success",
    "outputs": [{"image": "data:image/png;base64,..."}],
    "error_message": null
}

Run it as a GUI application

If you need a more user-friendly way to make predictions, start a GUI app with the following command:

$ tungsten demo text-to-image:latest -p 8080

INFO:     Uvicorn running on http://localhost:8080 (Press CTRL+C to quit)

tungsten-dashboard

Run it as a serverless function

We support remote, serverless executions via a Tungsten server.

Push a model:

$ tungsten push exampleuser/exampleproject -n text-to-image:latest

✅ Successfully pushed to 'https://server.tungsten-ai.com'

Now, you can start a remote prediction in the Tungsten server:

tungsten-platform-model-demo


Prerequisites

Installation

pip install tungstenkit

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tungstenkit-0.0.1a10.tar.gz (988.9 kB view details)

Uploaded Source

Built Distribution

tungstenkit-0.0.1a10-py3-none-any.whl (1.0 MB view details)

Uploaded Python 3

File details

Details for the file tungstenkit-0.0.1a10.tar.gz.

File metadata

  • Download URL: tungstenkit-0.0.1a10.tar.gz
  • Upload date:
  • Size: 988.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.6 Linux/5.19.0-38-generic

File hashes

Hashes for tungstenkit-0.0.1a10.tar.gz
Algorithm Hash digest
SHA256 18d14572f587d29b3a7369c31003b70be0284b75b920d540d64480954f2dc14c
MD5 671f7b3b9fc963668031536b2ca3e6fd
BLAKE2b-256 2b45a50aa4583e0e3fa5e5a88e241015b6adb22368a30c96972dbcd877df87bc

See more details on using hashes here.

File details

Details for the file tungstenkit-0.0.1a10-py3-none-any.whl.

File metadata

  • Download URL: tungstenkit-0.0.1a10-py3-none-any.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.6 Linux/5.19.0-38-generic

File hashes

Hashes for tungstenkit-0.0.1a10-py3-none-any.whl
Algorithm Hash digest
SHA256 fa37f7ecf1de3e450282dd1574927f9de0a0644de7b041c975ec9db09a74f024
MD5 29825d7a1423222fcbb523052f012882
BLAKE2b-256 7b54e143140b255bfc3c9f53cf585f1468560217b9d2aaf7e13fbe139601a9e2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page