Skip to main content

Tungstenkit is an open-source tool for building and using versatile and standardized ML model containers, Tungsten models.

Project description

Tungstenkit

Tungstenkit is an open-source tool for building and using versatile and standardized ML model containers, Tungsten models. Key features of Tungsten models are:

Learn More

Take the tour

Build a Tungsten model

Building a Tungsten model is easy. All you have to do is write a simple tungsten_model.py like below:

from typing import List

import torch
from tungstenkit import io, model


class Input(io.BaseIO):
    prompt: str


class Output(io.BaseIO):
    image: io.Image


@model.config(
    gpu=True,
    python_packages=["torch", "torchvision"],
    batch_size=4,
    description="Text to image"
)
class Model(model.TungstenModel[Input, Output]):
    def setup(self):
        weights = torch.load("./weights.pth")
        self.model = load_torch_model(weights)

    def predict(self, inputs: List[Input]) -> List[Output]:
        input_tensor = preprocess(inputs)
        output_tensor = self.model(input_tensor)
        outputs = postprocess(output_tensor)
        return outputs

Now, you can start a build process with the following command:

$ tungsten build

✅ Successfully built tungsten model: 'text-to-image:latest'

Run it as a RESTful API server

You can start a prediction with a REST API call.

Start a server:

$ docker run -p 3000:3000 --gpus all text-to-image:latest

INFO:     Setting up the model
INFO:     Getting inputs from the input queue
INFO:     Starting the prediction service
INFO:     Started server process [1]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://0.0.0.0:3000 (Press CTRL+C to quit)

Send a prediction request with a JSON payload:

$ curl -X 'POST' 'http://localhost:3000/predict' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '[{"prompt": "a professional photograph of an astronaut riding a horse"}]'

{
    "status": "success",
    "outputs": [{"image": "data:image/png;base64,..."}],
    "error_message": null
}

Run it as a GUI application

If you need a more user-friendly way to make predictions, start a GUI app with the following command:

$ tungsten demo text-to-image:latest -p 8080

INFO:     Uvicorn running on http://localhost:8080 (Press CTRL+C to quit)

tungsten-dashboard

Run it as a serverless function

We support remote, serverless executions via a Tungsten server.

Push a model:

$ tungsten push exampleuser/exampleproject -n text-to-image:latest

✅ Successfully pushed to 'https://server.tungsten-ai.com'

Now, you can start a remote prediction in the Tungsten server:

tungsten-platform-model-demo

Prerequisites

Installation

pip install tungstenkit

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tungstenkit-0.0.1a6.tar.gz (973.1 kB view details)

Uploaded Source

Built Distribution

tungstenkit-0.0.1a6-py3-none-any.whl (1.0 MB view details)

Uploaded Python 3

File details

Details for the file tungstenkit-0.0.1a6.tar.gz.

File metadata

  • Download URL: tungstenkit-0.0.1a6.tar.gz
  • Upload date:
  • Size: 973.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.7 Darwin/22.2.0

File hashes

Hashes for tungstenkit-0.0.1a6.tar.gz
Algorithm Hash digest
SHA256 29cf7bed5cd954316d676bc6422628fc2a46ffab4298c4512a777122cccd89ab
MD5 8d5af89f026b4dcf17419164a8d60ce9
BLAKE2b-256 2214040fe2da1224983a9ec5ce6ed0123bac2b4ebb634f56f460d0fd8db3c9af

See more details on using hashes here.

File details

Details for the file tungstenkit-0.0.1a6-py3-none-any.whl.

File metadata

  • Download URL: tungstenkit-0.0.1a6-py3-none-any.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.7 Darwin/22.2.0

File hashes

Hashes for tungstenkit-0.0.1a6-py3-none-any.whl
Algorithm Hash digest
SHA256 de2e101cd6849487446c821fa4ed02e8628e95594114b7cec5e2f39c5c203206
MD5 0000850471aa7a3c8e9034613ef1397e
BLAKE2b-256 1277c7248425f31b0c968c819cebd15f093016a1a9cb8ce43ba2f98c32e47674

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page