Skip to main content

Tungstenkit is an open-source tool for building and using versatile and standardized ML model containers, Tungsten models.

Project description

Tungstenkit

Tungstenkit is an open-source tool for building and using versatile and standardized ML model containers, Tungsten models. Key features of Tungsten models are:

Learn More

Take the tour

Build a Tungsten model

Building a Tungsten model is easy. All you have to do is write a simple tungsten_model.py like below:

from typing import List

import torch
from tungstenkit import io, model


class Input(io.BaseIO):
    prompt: str


class Output(io.BaseIO):
    image: io.Image


@model.config(
    gpu=True,
    python_packages=["torch", "torchvision"],
    batch_size=4,
    description="Text to image"
)
class Model(model.TungstenModel[Input, Output]):
    def setup(self):
        weights = torch.load("./weights.pth")
        self.model = load_torch_model(weights)

    def predict(self, inputs: List[Input]) -> List[Output]:
        input_tensor = preprocess(inputs)
        output_tensor = self.model(input_tensor)
        outputs = postprocess(output_tensor)
        return outputs

Now, you can start a build process with the following command:

$ tungsten build

✅ Successfully built tungsten model: 'text-to-image:latest'

Run it as a RESTful API server

You can start a prediction with a REST API call.

Start a server:

$ docker run -p 3000:3000 --gpus all text-to-image:latest

INFO:     Setting up the model
INFO:     Getting inputs from the input queue
INFO:     Starting the prediction service
INFO:     Started server process [1]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://0.0.0.0:3000 (Press CTRL+C to quit)

Send a prediction request with a JSON payload:

$ curl -X 'POST' 'http://localhost:3000/predict' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '[{"prompt": "a professional photograph of an astronaut riding a horse"}]'

{
    "status": "success",
    "outputs": [{"image": "data:image/png;base64,..."}],
    "error_message": null
}

Run it as a GUI application

If you need a more user-friendly way to make predictions, start a GUI app with the following command:

$ tungsten demo text-to-image:latest -p 8080

INFO:     Uvicorn running on http://localhost:8080 (Press CTRL+C to quit)

tungsten-dashboard

Run it as a serverless function

We support remote, serverless executions via a Tungsten server.

Push a model:

$ tungsten push exampleuser/exampleproject -n text-to-image:latest

✅ Successfully pushed to 'https://server.tungsten-ai.com'

Now, you can start a remote prediction in the Tungsten server:

tungsten-platform-model-demo

Prerequisites

Installation

pip install tungstenkit

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tungstenkit-0.0.1a7.tar.gz (988.6 kB view details)

Uploaded Source

Built Distribution

tungstenkit-0.0.1a7-py3-none-any.whl (1.0 MB view details)

Uploaded Python 3

File details

Details for the file tungstenkit-0.0.1a7.tar.gz.

File metadata

  • Download URL: tungstenkit-0.0.1a7.tar.gz
  • Upload date:
  • Size: 988.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.6 Linux/5.19.0-38-generic

File hashes

Hashes for tungstenkit-0.0.1a7.tar.gz
Algorithm Hash digest
SHA256 26994cd3b1ce42ca4c5df4d42a2973a2b119405eaf38263761fafa4b9717c5e2
MD5 12b0332e560d04f5a54529c90e7e5d1d
BLAKE2b-256 64de40b07f6808c02e76e354969232f030913e95e79728d7c680496bffdca5bb

See more details on using hashes here.

File details

Details for the file tungstenkit-0.0.1a7-py3-none-any.whl.

File metadata

  • Download URL: tungstenkit-0.0.1a7-py3-none-any.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.6 Linux/5.19.0-38-generic

File hashes

Hashes for tungstenkit-0.0.1a7-py3-none-any.whl
Algorithm Hash digest
SHA256 4ae7a3baf21cb16bbe7ad619f0d93d1f90ea259a75354e40d57baf084a678e3d
MD5 fddad3d0ae2ee949787ae6f4c1d3bf39
BLAKE2b-256 3067775e279120975461e72ec47faa6c75faa76df19f65600b4ba954b5b61aa1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page