Skip to main content

Tungstenkit is an open-source tool for building and using versatile and standardized ML model containers, Tungsten models.

Project description

Tungstenkit

Tungstenkit is an open-source tool for building and using versatile and standardized ML model containers, Tungsten models. Key features of Tungsten models are:

Learn More

Take the tour

Build a Tungsten model

Building a Tungsten model is easy. All you have to do is write a simple tungsten_model.py like below:

from typing import List

import torch
from tungstenkit import io, model


class Input(io.BaseIO):
    prompt: str


class Output(io.BaseIO):
    image: io.Image


@model.config(
    gpu=True,
    python_packages=["torch", "torchvision"],
    batch_size=4,
    description="Text to image"
)
class Model(model.TungstenModel[Input, Output]):
    def setup(self):
        weights = torch.load("./weights.pth")
        self.model = load_torch_model(weights)

    def predict(self, inputs: List[Input]) -> List[Output]:
        input_tensor = preprocess(inputs)
        output_tensor = self.model(input_tensor)
        outputs = postprocess(output_tensor)
        return outputs

Now, you can start a build process with the following command:

$ tungsten build

✅ Successfully built tungsten model: 'text-to-image:latest'

Run it as a RESTful API server

You can start a prediction with a REST API call.

Start a server:

$ docker run -p 3000:3000 --gpus all text-to-image:latest

INFO:     Setting up the model
INFO:     Getting inputs from the input queue
INFO:     Starting the prediction service
INFO:     Started server process [1]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://0.0.0.0:3000 (Press CTRL+C to quit)

Send a prediction request with a JSON payload:

$ curl -X 'POST' 'http://localhost:3000/predict' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '[{"prompt": "a professional photograph of an astronaut riding a horse"}]'

{
    "status": "success",
    "outputs": [{"image": "data:image/png;base64,..."}],
    "error_message": null
}

Run it as a GUI application

If you need a more user-friendly way to make predictions, start a GUI app with the following command:

$ tungsten demo text-to-image:latest -p 8080

INFO:     Uvicorn running on http://localhost:8080 (Press CTRL+C to quit)

tungsten-dashboard

Run it as a serverless function

We support remote, serverless executions via a Tungsten server.

Push a model:

$ tungsten push exampleuser/exampleproject -n text-to-image:latest

✅ Successfully pushed to 'https://server.tungsten-ai.com'

Now, you can start a remote prediction in the Tungsten server:

tungsten-platform-model-demo

Prerequisites

Installation

pip install tungstenkit

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tungstenkit-0.0.1a8.tar.gz (988.8 kB view details)

Uploaded Source

Built Distribution

tungstenkit-0.0.1a8-py3-none-any.whl (1.0 MB view details)

Uploaded Python 3

File details

Details for the file tungstenkit-0.0.1a8.tar.gz.

File metadata

  • Download URL: tungstenkit-0.0.1a8.tar.gz
  • Upload date:
  • Size: 988.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.6 Linux/5.19.0-38-generic

File hashes

Hashes for tungstenkit-0.0.1a8.tar.gz
Algorithm Hash digest
SHA256 5b26fdacee83447e2855ad2de1fec1f9cd7958e35950a5a449997b26dfc9d939
MD5 4ce4a9f17c7753b62782bbccec6c197e
BLAKE2b-256 16925dd70dbaef9e065ff80cd730b136eb99c6945dcbe1904bf9f96bb9c6bef8

See more details on using hashes here.

File details

Details for the file tungstenkit-0.0.1a8-py3-none-any.whl.

File metadata

  • Download URL: tungstenkit-0.0.1a8-py3-none-any.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.6 Linux/5.19.0-38-generic

File hashes

Hashes for tungstenkit-0.0.1a8-py3-none-any.whl
Algorithm Hash digest
SHA256 62630f97add01c99143d57018566b608836c1f3f24865a935e60558ea898bdac
MD5 2eb8d99349ed650214159b019f9a76d3
BLAKE2b-256 96c724c4c3338aecbf125dfc8a4d8871f75395afdb635221fe32303a109af4ff

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page