Skip to main content

Tungstenkit is an open-source tool for building standardized containers for machine learning models.

Project description

Tungstenkit

Tungstenkit is an open-source tool for building standardized containers for machine learning models.

The key features are:

Learn More


Take the tour

Build a Tungsten model

Building a Tungsten model is easy. All you have to do is write a simple tungsten_model.py like below:

from typing import List

import torch
from tungstenkit import io, model


class Input(io.BaseIO):
    prompt: str


class Output(io.BaseIO):
    image: io.Image


@model.config(
    gpu=True,
    python_packages=["torch", "torchvision"],
    batch_size=4,
    description="Text to image"
)
class Model(model.TungstenModel[Input, Output]):
    def setup(self):
        weights = torch.load("./weights.pth")
        self.model = load_torch_model(weights)

    def predict(self, inputs: List[Input]) -> List[Output]:
        input_tensor = preprocess(inputs)
        output_tensor = self.model(input_tensor)
        outputs = postprocess(output_tensor)
        return outputs

Now, you can start a build process with the following command:

$ tungsten build

✅ Successfully built tungsten model: 'text-to-image:latest'

Run it as a RESTful API server

You can start a prediction with a REST API call.

Start a server:

$ docker run -p 3000:3000 --gpus all text-to-image:latest

INFO:     Setting up the model
INFO:     Getting inputs from the input queue
INFO:     Starting the prediction service
INFO:     Started server process [1]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://0.0.0.0:3000 (Press CTRL+C to quit)

Send a prediction request with a JSON payload:

$ curl -X 'POST' 'http://localhost:3000/predict' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '[{"prompt": "a professional photograph of an astronaut riding a horse"}]'

{
    "status": "success",
    "outputs": [{"image": "data:image/png;base64,..."}],
    "error_message": null
}

Run it as a GUI application

If you need a more user-friendly way to make predictions, start a GUI app with the following command:

$ tungsten demo text-to-image:latest -p 8080

INFO:     Uvicorn running on http://localhost:8080 (Press CTRL+C to quit)

tungsten-dashboard

Run it as a serverless function

We support remote, serverless executions via a Tungsten server.

Push a model:

$ tungsten push exampleuser/exampleproject -n text-to-image:latest

✅ Successfully pushed to 'https://server.tungsten-ai.com'

Now, you can start a remote prediction in the Tungsten server:

tungsten-platform-model-demo

Prerequisites

Installation

pip install tungstenkit

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tungstenkit-0.0.1a9.tar.gz (988.9 kB view details)

Uploaded Source

Built Distribution

tungstenkit-0.0.1a9-py3-none-any.whl (1.0 MB view details)

Uploaded Python 3

File details

Details for the file tungstenkit-0.0.1a9.tar.gz.

File metadata

  • Download URL: tungstenkit-0.0.1a9.tar.gz
  • Upload date:
  • Size: 988.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.6 Linux/5.19.0-38-generic

File hashes

Hashes for tungstenkit-0.0.1a9.tar.gz
Algorithm Hash digest
SHA256 566b0863331e2cb9b7c73e3730d3e6dd166612bc3330d5564720e2fcca3c5756
MD5 3a15ca6ebf4718fe08effb88bef9e93b
BLAKE2b-256 89b690b95d4079e9239357983237f3191895e47fc12dab8883fefd11f0c5432e

See more details on using hashes here.

File details

Details for the file tungstenkit-0.0.1a9-py3-none-any.whl.

File metadata

  • Download URL: tungstenkit-0.0.1a9-py3-none-any.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.6 Linux/5.19.0-38-generic

File hashes

Hashes for tungstenkit-0.0.1a9-py3-none-any.whl
Algorithm Hash digest
SHA256 396cf205bfa29e06ed859b5c94dc937c7098188ddf243102f3bbde4c9121a5d8
MD5 2da096002765db0d796fb9fe41fd7daf
BLAKE2b-256 c806ebc1d384f9e064c7f3f200cc9a99af14f372faf416b2de2b014b0fc0d632

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page