Skip to main content

ML container made simple

Project description

Tungstenkit: ML container made simple

Version License Downloads Supported Python versions

Introduction | Installation | Getting Started | Documentation

Tungstenkit is ML containerization tool with a focus on developer productivity and versatility.

The key features are:

Take the tour

Requires only a few lines of python code

Building a Tungsten model is easy. All you have to do is write a simple tungsten_model.py like:

from typing import List
import torch
from tungstenkit import BaseIO, Image, define_model


class Input(BaseIO):
    prompt: str


class Output(BaseIO):
    image: Image


@define_model(
    input=Input,
    output=Output,
    gpu=True,
    python_packages=["torch", "torchvision"],
    batch_size=4,
    gpu_mem_gb=24,
)
class TextToImageModel:
    def setup(self):
        weights = torch.load("./weights.pth")
        self.model = load_torch_model(weights)

    def predict(self, inputs: List[Input]) -> List[Output]:
        input_tensor = preprocess(inputs)
        output_tensor = self.model(input_tensor)
        outputs = postprocess(output_tensor)
        return outputs

Start a build process:

$ tungsten build . -n text-to-image

✅ Successfully built tungsten model: 'text-to-image:e3a5de56' (also tagged as 'text-to-image:latest')

Check the built image:

$ tungsten models

Repository        Tag       Create Time          Docker Image ID
----------------  --------  -------------------  ---------------
text-to-image     latest    2023-04-26 05:23:58  830eb82f0fcd
text-to-image     e3a5de56  2023-04-26 05:23:58  830eb82f0fcd

Build once, use everywhere

REST API server

Start a server:

$ tungsten serve text-to-image -p 3000

INFO:     Uvicorn running on http://0.0.0.0:3000 (Press CTRL+C to quit)

Send a prediction request with a JSON payload:

$ curl -X 'POST' 'http://localhost:3000/predict' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '[{"prompt": "a professional photograph of an astronaut riding a horse"}]'

{
    "outputs": [{"image": "data:image/png;base64,..."}]
}

GUI application

If you need a more user-friendly way to make predictions, start a GUI app with the following command:

$ tungsten demo text-to-image -p 8080

INFO:     Uvicorn running on http://localhost:8080 (Press CTRL+C to quit)

tungsten-dashboard

CLI application

Run a prediction in a terminal:

$ tungsten predict text-to-image \
   -i prompt="a professional photograph of an astronaut riding a horse"

{
  "image": "./output.png"
}

Python function

If you want to run a model in your Python application, use the Python API:

>>> from tungstenkit import models
>>> model = models.get("text-to-image")
>>> model.predict(
    {"prompt": "a professional photograph of an astronaut riding a horse"}
)
{"image": PosixPath("./output.png")}

Framework-agnostic and lightweight

Tungstenkit doesn't restrict you to use specific ML libraries. Just use any library you want, and declare dependencies:

# The latest cpu-only build of Tensorflow will be included
@define_model(input=Input, output=Output, gpu=False, python_packages=["tensorflow"])
class Model:
    def predict(self, inputs):
        """Run a batch prediction"""
        # ...ops using tensorflow...
        return outputs

Batched prediction

Tungstenkit supports both server-side and client-side batching.

  • Server-side batching

    A server groups inputs across multiple requests and processes them together. You can configure the max batch size:

    @define_model(input=Input, output=Output, gpu=True, batch_size=32)
    

    The max batch size can be changed when running a server:

    $ docker run -p 3000:3000 --gpus all model:latest --batch-size 64 
    
  • Client-side batching
    Also, you can reduce traffic volume by putting multiple inputs in a single prediction request:

    $ curl -X 'POST' 'http://localhost:3000/predict' \
      -H 'accept: application/json' \
      -H 'Content-Type: application/json' \
      -d '[{"field": "input1"}, {"field": "input2"}, {"field": "input3"}]'
    
    {
      "outputs": [
        {"field": "output1"},
        {"field": "output2"},
        {"field": "output3"}
      ]
    }
    

Pydantic input/output definitions with convenient file handling

Let's look at the example below:

from tungstenkit import BaseIO, Image, define_model


class Input(BaseIO):
    image: Image


class Output(BaseIO):
    image: Image


@define_model(input=Input, output=Output)
class StyleTransferModel:
    ...

As you see, input/output types are defined as subclasses of the BaseIO class. The BaseIO class is a simple wrapper of the BaseModel class of Pydantic, and Tungstenkit validates JSON requests utilizing functionalities Pydantic provides.

Also, you can see that the Image class is used. Tungstenkit provides four file classes for easing file handling - Image, Audio, Video, and Binary. They have useful methods for writing a model's predict method:

class StyleTransferModel:
    def predict(self, inputs: List[Input]) -> List[Output]:
        # Preprocessing
        input_pil_images = [inp.image.to_pil_image() for inp in inputs]
        # Inference
        output_pil_images = do_inference(input_pil_images)
        # Postprocessing
        output_images = [Image.from_pil_image(pil_image) for pil_image in output_pil_images]
        outputs = [Output(image=image) for image in output_images]
        return outputs

Prerequisites

Installation

pip install tungstenkit

Documentation

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tungstenkit-0.1.3.tar.gz (723.6 kB view details)

Uploaded Source

Built Distribution

tungstenkit-0.1.3-py3-none-any.whl (777.6 kB view details)

Uploaded Python 3

File details

Details for the file tungstenkit-0.1.3.tar.gz.

File metadata

  • Download URL: tungstenkit-0.1.3.tar.gz
  • Upload date:
  • Size: 723.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.10.6 Linux/5.19.0-46-generic

File hashes

Hashes for tungstenkit-0.1.3.tar.gz
Algorithm Hash digest
SHA256 ee3c7d41bf228983135a001eee101c5b0282b63e382fb7452713944261acb06b
MD5 50f27c9c5e5af79f8420d3e24d7dbe4a
BLAKE2b-256 f60d7ac4502c57a8f3d8ef62c9c8d62306fde418029433379926a4abef0fe3c2

See more details on using hashes here.

File details

Details for the file tungstenkit-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: tungstenkit-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 777.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.10.6 Linux/5.19.0-46-generic

File hashes

Hashes for tungstenkit-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 662a4f2f27824c69a07866cadb1d7e957a5d78885791a45af451c627ca31860a
MD5 368cb3e422072b352b4d2371e252da98
BLAKE2b-256 41a9f0fbea462d91f87bc176a25cd8965be264c25890e63267df10d0816528e7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page