Skip to main content

fully connected neural network with four layers

Project description

----------------------------------------------------------------
Fully connected four-layer neural network
Solves a huge number of cases, classification and regression
Fast, robust and very simple to use, this is the way
(As long as python exists this project will exist)
----------------------------------------------------------------


#Manual = https://www.mediafire.com/file/xygt3o9zf7iw3id/Manual_Tupa123.pdf

#Quick Guide = https://www.mediafire.com/file/a0db7fb3lfsxvaj/Guia_Rapido.pdf

#Excel example data = https://www.mediafire.com/file/o2nzsmnvweh8w1a/ALETAS.xlsx
#Excel example (old version) = https://www.mediafire.com/file/0xmx5quakd21txu/ALETAS.xls



#-----FILE TO MACHINE LEARNING-----------------------------

import tupa123 as tu

X = tu.ExcelMatrix('ALETAS.xlsx', 'Plan1', Lineini=2, Columini=1, columnquantity=5, linesquantity=300)
y = tu.ExcelMatrix('ALETAS.xlsx', 'Plan1', Lineini=2, Columini=6, columnquantity=2, linesquantity=300)

model = tu.nnet4(nn1c=5, nn2c=7, nn3c=5, nn4c=2, namenet='tupa01')
model.Fit_ADAM(X, y)
model.Plotconv()

input('end')

#-----FILE TO APPLICATION OF MACHINE LEARNING--------------

import tupa123 as tu

model = tu.nnet4(nn1c=5, nn2c=7, nn3c=5, nn4c=2, namenet='tupa01')
X_new = tu.ExcelMatrix('ALETAS.xlsx', 'Plan1', Lineini=2, Columini=1, columnquantity=5, linesquantity=1000)
y_resposta = tu.ExcelMatrix('ALETAS.xlsx', 'Plan1', Lineini=2, Columini=6, columnquantity=2, linesquantity=1000)
y_pred = model.Predict(X_new)

tu.Statistics(y_pred, y_resposta)
tu.PlotCorrelation(y_pred, y_resposta)
tu.PlotComparative(y_pred, y_resposta)
input('end')

Project details


Release history Release notifications | RSS feed

This version

1.5.8

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tupa123-1.5.8.tar.gz (74.7 kB view details)

Uploaded Source

File details

Details for the file tupa123-1.5.8.tar.gz.

File metadata

  • Download URL: tupa123-1.5.8.tar.gz
  • Upload date:
  • Size: 74.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for tupa123-1.5.8.tar.gz
Algorithm Hash digest
SHA256 6ced812f09b93a63592f566eeff3c59cd459e1b26141500a6d6699ea8e973c61
MD5 de8029766a10f8818278153104ffbc0e
BLAKE2b-256 8a57f7e8a88da1d343ca2891d18bbc8b39c57fe0eba3bb2e4b7a9c687d9fdc66

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page