fully connected neural network with four layers
Project description
----------------------------------------------------------------
Fully connected four-layer neural network
Solves a huge number of cases, classification and regression
Fast, robust and very simple to use, this is the way
(As long as python exists this project will exist)
----------------------------------------------------------------
#Manual = https://www.mediafire.com/file/xygt3o9zf7iw3id/Manual_Tupa123.pdf
#Quick Guide = https://www.mediafire.com/file/a0db7fb3lfsxvaj/Guia_Rapido.pdf
#Excel example data = https://www.mediafire.com/file/o2nzsmnvweh8w1a/ALETAS.xlsx
#Excel example (old version) = https://www.mediafire.com/file/0xmx5quakd21txu/ALETAS.xls
#-----FILE TO MACHINE LEARNING-----------------------------
import tupa123 as tu
X = tu.ExcelMatrix('ALETAS.xlsx', 'Plan1', Lineini=2, Columini=1, columnquantity=5, linesquantity=300)
y = tu.ExcelMatrix('ALETAS.xlsx', 'Plan1', Lineini=2, Columini=6, columnquantity=2, linesquantity=300)
model = tu.nnet4(nn1c=5, nn2c=7, nn3c=5, nn4c=2, namenet='tupa01')
model.Fit_ADAM(X, y)
model.Plotconv()
input('end')
#-----FILE TO APPLICATION OF MACHINE LEARNING--------------
import tupa123 as tu
model = tu.nnet4(nn1c=5, nn2c=7, nn3c=5, nn4c=2, namenet='tupa01')
X_new = tu.ExcelMatrix('ALETAS.xlsx', 'Plan1', Lineini=2, Columini=1, columnquantity=5, linesquantity=1000)
y_resposta = tu.ExcelMatrix('ALETAS.xlsx', 'Plan1', Lineini=2, Columini=6, columnquantity=2, linesquantity=1000)
y_pred = model.Predict(X_new)
tu.Statistics(y_pred, y_resposta)
tu.PlotCorrelation(y_pred, y_resposta)
tu.PlotComparative(y_pred, y_resposta)
input('end')
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file tupa123-1.5.8.tar.gz
.
File metadata
- Download URL: tupa123-1.5.8.tar.gz
- Upload date:
- Size: 74.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6ced812f09b93a63592f566eeff3c59cd459e1b26141500a6d6699ea8e973c61 |
|
MD5 | de8029766a10f8818278153104ffbc0e |
|
BLAKE2b-256 | 8a57f7e8a88da1d343ca2891d18bbc8b39c57fe0eba3bb2e4b7a9c687d9fdc66 |