Skip to main content

fully connected neural network with four layers

Project description

Fully connected four-layer neural network
Solves a huge number of cases, classification and regression
The following sequence explains how to use with the help of two example files.
The first file contains the learning process, where the neural network finds its weights
The second file demonstrates the network's ability to make predictions on new, unseen data that is not part of the training set

#-----Files without comments:---------------------------------------

#-----FILE TO MACHINE LEARNING

import tupa123 as tu

X = tu.ExcelMatrix('ALETAS.xlsm', 'Plan1', Lineini=2, Columini=1, columnquantity=5, linesquantity=300)
y = tu.ExcelMatrix('ALETAS.xlsm', 'Plan1', Lineini=2, Columini=6, columnquantity=2, linesquantity=300)

model = tu.nnet4(norma=5, coef=0, nn1c=5, nn2c=7, nn3c=5, nn4c=2, rate=0.01, epochs=2000, fa2c=5, fa3c=5, fa4c=0)
model.Fit_ADAM(X, y)
model.Plotconv()

input('end')

#-----FILE TO APPLICATION OF MACHINE LEARNING

import tupa123 as tu

model = tu.nnet4(norma=5, coef=0, nn1c=5, nn2c=7, nn3c=5, nn4c=2, fa2c=5, fa3c=5, fa4c=0)
X_new = tu.ExcelMatrix('ALETAS.xlsm', 'Plan1', Lineini=2, Columini=1, columnquantity=5, linesquantity=1000)
y_resposta = tu.ExcelMatrix('ALETAS.xlsm', 'Plan1', Lineini=2, Columini=6, columnquantity=2, linesquantity=1000)
y_pred = model.Predict(X_new)

tu.Statistics(y_pred, y_resposta)
tu.PlotCorrelation(y_pred, y_resposta)
tu.PlotComparative(y_pred, y_resposta)
input('end')

#------Commented file:------------------------------------------


#-----MACHINE LEARNING

import tupa123 as tu
#import the library

X = tu.ExcelMatrix('ALETAS.xlsm', 'Plan1', Lineini=2, Columini=1, columnquantity=5, linesquantity=300)
y = tu.ExcelMatrix('ALETAS.xlsm', 'Plan1', Lineini=2, Columini=6, columnquantity=2, linesquantity=300)
#learning data
#The data can come from any source, but the ExcelMatrix function allows a practical interaction with Excel
#ExcelMatrix = collect data from excel, the spreadsheet needs to be in the same folder as the python file
#'ALETAS.xlsm' = example name of the excel file / 'Sheet1' = example name of the tab where the data are
#Lineini=2, Columini=1 = example initial row and column of data
#linesquantity = number of lines of learning data
#X = regression input data / y = data to be predicted

model = tu.nnet4(norma=5, coef=0, nn1c=5, nn2c=7, nn3c=5, nn4c=2, rate=0.01, epochs=2000, fa2c=5, fa3c=5, fa4c=0)
#creates the Neural Network model
#norma = type of data normalization:
#=0, do anything
#=1, between 0 and 1
#=2, between -1 and 1
#=3, log(x+coef)
#=4, log(x+coef) between 0 and 1
#=5, log(x+coef) between -1 and 1
#coef = used to avoid zero in log normalizations, example 0.0012345
#nn1c=5, nn2c=7, nn3c=5, nn4c=2 = number of neurons from the first to the fourth layer
#rate = learning rate
#epochs = number of epochs
#fa2c=5, fa3c=5, fa4c=0 = second to fourth layer activation functions
#for regression (quantitative forecasting) the fourth layer is recommended as linear = 0
#Activation functions:
#=0 linear
#=1 Sigmoide

#=2 softpluss
#=3 gaussinana
#=4 ReLU
#=5 tanh
#=6 LReLU

#=7 arctan
#=8 exp
#=9 seno
#=10 swish
#=11 selu
#=12 logsigmoide

model.Fit_ADAM(X, y)
#machine learning
#model.Fit_ADAM(X, y) = single batch interpolation of all learning data, with ADAM accelerator
#model.Fit_STOC(X, y) = case-by-case interpolation, stochastic gradient descent

model.Plotconv()
#Plot the convergence process

input('End')

#-----APPLICATION OF MACHINE LEARNING

import tupa123 as tu

model = tu.nnet4(norma=5, coef=0, nn1c=5, nn2c=7, nn3c=5, nn4c=2, fa2c=5, fa3c=5, fa4c=0)
#application file must be in the same folder as the learning file
#where some .txt files were generated with the neural network settings
#neural network must have the same configuration that was used in the learning phase

X_new = tu.ExcelMatrix('ALETAS.xlsm', 'Plan1', Lineini=2, Columini=1, columnquantity=5, linesquantity=1000)
#variables to be predicted

y_resposta = tu.ExcelMatrix('ALETAS.xlsm', 'Plan1', Lineini=2, Columini=6, columnquantity=2, linesquantity=1000)
#right answer to compare, to evaluate neural network performance

y_pred = model.Predict(X_new)
#prediction, neural network result

tu.Statistics(y_pred, y_resposta)
#Statistical evaluation of the results
#It does some basic statistics: mean difference, standard deviation and correlation coefficient between predicted and target variable

tu.PlotCorrelation(y_pred, y_resposta)
#Calculated and target correlation plot

tu.PlotComparative(y_pred, y_resposta)
#Calculated and target comparative plot

input('end')

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tupa123-1.0.13.tar.gz (9.7 kB view details)

Uploaded Source

File details

Details for the file tupa123-1.0.13.tar.gz.

File metadata

  • Download URL: tupa123-1.0.13.tar.gz
  • Upload date:
  • Size: 9.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for tupa123-1.0.13.tar.gz
Algorithm Hash digest
SHA256 8dfcc96c74508dada5b2717da9a923458b188ff739db2d4849ca822fc1a2af5a
MD5 7fcb243ecc124cdc0fe133eb76032ba7
BLAKE2b-256 f28a73df64fc43ac238c5d51c82101c6c17816f508ed8c2abd5c9e0003ba74c6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page